
Expanding the Ecosystem of
Custom System Firmware for Intel®
Architecture

Intel® FSP provides the firmware com-
ponent for initializing essential and
basic functions of Intel® processors and
chipsets. It is designed to support all
firmware stacks available in the mar-
ket2. The size of the Intel® FSP binary is
small, around 100 to 350 kilobytes, and
it performs fast execution of around
100 to 300 milliseconds3. After Intel®
FSP completes its initialization, the
firmware stack performs the remaining
functions of platform initialization such
as device discovery, device initializa-
tion, booting an operating system
(OS), etc. With Intel® FSP, Independent
Software Vendors (ISV) and Indepen-
dent BIOS Vendors (IBV) in the ecosys-
tem can continue to provide services
for system firmware customization and
value-added feature development.

Executive Summary

This paper introduces the rationale behind Intel® Firmware Support Package (Intel®
FSP), its development options, and an illustration of a workflow that shows how
to integrate Intel® FSP with a sample firmware stack1: coreboot*, which is an open
source firmware stack. Readers can experiment and apply the concepts presented
to their own firmware stack of choice.

With Intel® FSP and other reference source code releases, Intel promises develop-
ers greater freedom, flexibility, and scalability when designing Internet of Things
(IoT) devices using Intel® Architecture.

Benefits

Intel® FSP is scalable and easy to adopt;
it lowers the threshold towards the
adoption of Intel® Architecture in the In-
ternet of Things (IoT) ecosystem. Intel®
FSP is available publicly, and it is free
to download; therefore, developers and
hobbyists can quickly build a proto-
type and a basic firmware framework
with ease. Once the interface to Intel®
FSP is built inside a firmware stack,
developers can use future releases of
Intel® FSP binary and expect it to work
with minimum porting effort. The most
significant benefit is reducing the need
to read the comprehensive firmware
and BIOS programming guides that are
typically a few hundred pages long.

Design Philosophy

Intel, like other silicon vendors, holds
the key to the knowledge in initializing
the silicon it produces. Without the
help from silicon vendors, firmware
engineers typically have to perform
reverse engineering and use trial and

Wong, Swee Heng
Intel Corporation

Sun, Jiming
Intel Corporation

Mahesh, Divya
Intel Corporation

 “Intel® Firmware Support
Package offers a firmware

solution for Intel® Archi-
tecture that is scalable and
easy to adopt, lowering the

threshold towards the adop-
tion of Intel® Architecture in

the Internet of Things
ecosystem”

Intel® Firmware Support Package
for Intel® Architecture
Intel® Firmware Support Package provides Internet of Things developers the
flexibility of usage-specific and royalty-free firmware solution for
Internet of Things devices based on Intel® Architecture.

White Paper
Intel® Firmware Support Package
Internet of Things

error methods in order to get the basic
silicon functions working. By providing
a binary that performs the basic silicon
initialization, Intel enables firmware
engineers to focus on features that add
value to the platform instead of basic
silicon features that do not differentiate
the product significantly.

Unique Requirements of IoT

Unlike firmware for PCs (BIOS or UEFI),
IoT firmware frequently deals with a
closed system that performs dedicated
functions; therefore, an IoT firmware
can be customized to reduce the size
and optimized for performance. Some-
times, features in a PC firmware directly
contradict the requirements of an IoT
firmware; for example, if determinism
and predictability are needed, then the
intelligence of plug-and-play and the
heuristic power management algo-
rithm are in conflict. Therefore, there
are cases in the IoT ecosystem where
alternatives to PC firmware are needed.
Intel® FSP provides the flexibility for
developers to choose an alternative
firmware stack.

Strategic Moves

Intel® FSP is not only designed with a
long-term focus of supporting proces-
sors suitable for IoT designs, but to also
extend the reach to other Intel proces-
sor families, which include Intel® Core™,
Intel® Atom™, and Intel® Xeon™ proces-
sors. A list of supported Intel processor
families is available at
www.intel.com/fsp.

Why Binary?

Intel understands that many develop-
ers in the early stages of designing
a new platform need source code to
help them debug issues in hardware
and firmware. Even though Intel® FSP
contains a binary component for inte-
gration, the source code can be made
available for debugging purposes. The
reason Intel® FSP provides a binary
component is to protect certain Intel
intellectual properties and also to avoid
source code contamination associated
with open source licensing agreements.

Nevertheless, Intel is working towards
releasing as much source code as pos-
sible going forward. A binary compo-
nent is still the best way to encapsulate
the complex solution that developers

Table of Contents

Executive Summary 1

Expanding the Ecosystem of
Custom System Firmware
for Intel® Architecture 1

Benefits . 1

Design Philosophy. 1

Unique Requirements of IoT. . . . 2

Strategic Moves. 2

Why Binary? 2

Creating Development Options. . . . 3

Firmware Stack Sources 3

Support Models. 3

Other Ingredients of Firmware
Stacks Based on Intel® FSP. 4

Workflow Example to
Integrate Intel® FSP
into coreboot 4

Solving Technical Challenges 5

Conclusion. 6

Reference
BIOS

Reference
 BIOS

Custom system

firmware stack

Silicon

Init

Code

Other

glue

code

Intel

FSP

R

Intel

FSP
core

R

Hard to Port

Extracted

Combined

Wrapper

API

Intel® FSP simplifies firmware
development. This diagram illustrates
the relationship between Intel® FSP and
its origin, Reference BIOS. The scattered
subset form of the Reference BIOS
makes it difficult to port the vital silicon
initialization code to custom system
firmware. Intel® FSP extracts the silicon
initialization code and consolidates
the code into the Intel® FSP binary,
simplifying the development of custom
system firmware.

2

Intel® Firmware Support Package for Intel® Architecture

http://www.intel.com/fsp

FSP into it. However, they may receive
limited support from the open source
community.

Firmware Stack Sources

Firmware stacks can be obtained from
the following sources:

•	�Open Source Community

An example of an open source firm-
ware stack is coreboot. Designed
to be simple, flexible, and fast,
coreboot separates the hardware
initialization and the later boot logic.
It uses the payload concept to boot
different operating systems and ap-
plications.

Obtain support from the coreboot
community by subscribing to the
coreboot mailing list (www.core-
boot.org/Mailinglist) or reading the
FAQ (www.coreboot.org/FAQ).

•	�Intel® FSP Ecosystem Partners

Information regarding ecosystem
partners (vendors) for Intel® FSP is
available at www.intel.com/fsp.

may not necessarily need to bother
about as long as the binary component
does its job right.

Creating Development Options

Original equipment manufacturer
(OEM) firmware designers have three
firmware development options:

• �Self-Customization

With this option, OEMs perform their
own self-customization using custom
integrated packages purchased from
ecosystem partners.

• �Engineering Services

Alternatively, OEMs can engage eco-
system partners to provide their engi-
neering services to purchase partial or
full firmware solutions.	

• �Self-Integration

OEMs with experience in developing
firmwares can perform self-integra-
tion. They can download an open
source or use their own proprietary
firmware stack and integrate Intel®

Support Models

The following are the support models
for Intel® FSP, coreboot, and propri-
etary firmware stacks.

•	�Intel® FSP Support

Support for Intel® FSP is available
from Intel® FSP Web site at
www.intel.com/fsp

•	�coreboot Support

Support for coreboot is available
from the following sources:

— coreboot Web site at
www.coreboot.org

— ecosystem partners, with engi-
neering support that incurs costs

•	Ecosystem Partners’ Firmware
Stack Support

Support for ecosystem partners’
firmware stack is available from the
respective ecosystem partners. For
example, VxWorks* support is avail-
able from Wind River.

Development Options with
Intel® FSP. The Intel® FSP binary
component is royalty-free,
but Intel does not provide any
engineering services for its
integration into the customers’
design.

Wind River

Sage

WARIS Technologies, Inc.

American Megatrends Inc.

Insyde Software

Ircona

Nanjing Bysoft Co., Ltd.

Eltan

U-Boot*

coreboot*

RedBoot*

TianoCore*

AiR-Boot*

Download open source

x86 boot code

Self-Integration

OEM integrates and customizes;

receives limited support from

the open source community

Engineering Services

OEM purchases solutions

and/or services from ecosystem

partners

Self-Customization

OEM customizes custom

integrated packages purchased

from ecosystem partners

Custom integrated

package from ecosystem

partner website for a cost

Includes the ingredients

necessary to create images,

development environment,

tools, etc.

Original Equipment Manufacturer (OEM)

Intel Firmware Support Package

(Intel FSP)

Royalty-free download from

www.intel.com/fsp

R

Ecosystem partner intergrates

Intel FSP with a firmware stack

to provide a value-added boot

solution

R

R

3

Intel® Firmware Support Package for Intel® Architecture

http://www.coreboot.org/Mailinglist
http://www.coreboot.org/Mailinglist
http://www.coreboot.org/FAQ
http://www.intel.com/fsp
http://www.intel.com/fsp
http://www.coreboot.org

Other Ingredients of Firmware
Stacks Based on Intel® FSP

The following are the additional
components for firmware stacks
based on Intel® FSP.

Enable Pre-OS Graphics

Depending on platform require-
ments, there are several options
to enable pre-OS graphics such as
Graphics Output Protocol (GOP),
Embedded Pre-OS Graphics (EPOG),
and video BIOS (VBIOS). Some Intel®
FSP releases have a built-in graph-
ics initialization engine that enables
a primitive connection between the
display device and the framebuf-
fer to display simple text and logos.
Please refer to the Intel® Embedded
Graphics Drivers FAQ at
www-ssl.intel.com/content/www/
us/en/intelligent-systems/intel-em-
bedded-graphics-drivers/faq-bios-
firmware.html for details.

Enable Trusted Execution Engine
(TXE) in the Firmware
Application example on the Intel®
Atom™ E3800 processor (formerly
Bay Trail) product family platform

The Trusted Execution Engine (TXE)
is a hardware-based security feature,
which comprises an independent
processor core embedded inside the
Intel® Atom™ system-on-chip (SoC).
It enables Secure Boot, which helps
the computer resist tampering from
external sources by ensuring only
validated code is executed.

Enable Management Engine (ME) in
the Firmware
Application example on the 4th genera-
tion Intel® Core™ processor (formerly
Haswell) product family platform

The Management Engine (ME) is a hard-
ware feature embedded in the Platform
Controller Hub (PCH) of the 4th gen-
eration Intel® Core™ processor family
platforms. It is a platform protection
technology that provides administra-
tors enhanced remote management on
the platform.

Workflow Example to Integrate Intel®
FSP into coreboot

This example describes the workflow to
integrate Intel® FSP into coreboot. How-
ever, the same principle can be applied
to other firmware stacks.

The following are the general steps to
integrate Intel® FSP into coreboot.

1.	 Understand the architecture of
the platform using the relevant
documentation — for example, data
sheets, product briefs, and white
papers are available from the Intel
Web site — when developing the
firmware for a particular platform.
Platform collaterals are available
from the Intel Embedded Design
Center (EDC) Web site at www.intel.
com/content/www/us/en/intelli-
gent-systems/embedded-design-
center.html.

2.	 Download the Intel® FSP compo-
nents, available for free, from the
Intel® FSP Web site at
www/intel.com/fsp.

The Intel® FSP solution is available
for the Windows* and Linux* operat-
ing systems, and includes a release
note and a readme file. Review both
documents for further details.

3.	 For the Windows release, double-
click the executable file in the Win-
dows environment to extract the
downloaded package.

For the Linux release, extract the
downloaded file in the Linux envi-
ronment.

The extracted files are as follows:

•	 a binary file with application
program interfaces (APIs) to call
Intel® FSP functions

•	 an integration guide with
instructions for the particular
platform

The integration guide is written
for platform and system devel-
opers (which may include system
BIOS developers, firmware stack
developers, system integrators,
and end-users). It describes
in detail the steps required to
integrate the Intel® FSP binary
component for the particular
platform into a firmware stack
solution. The integration guide
also includes links to related
documents that may provide
further technical support.

4.	 Download (git clone) the coreboot
source distribution from
www.coreboot.org for the coreboot
source directory tree. For example,
git clone http://review.
coreboot.org/p/coreboot

5.	 Copy the Intel® FSP binary com-
ponent (i.e., FvFsp.bin) into the
appropriate directory inside the
coreboot directory tree. An example
of performing this step in a Linux
terminal is shown below:

#cp FvFsp.bin coreboot/src/
mainboard/intel/
cougarcanyon2

4

Intel® Firmware Support Package for Intel® Architecture

https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-embedded-graphics-drivers/faq-bios-firmware.html
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-embedded-graphics-drivers/faq-bios-firmware.html
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-embedded-graphics-drivers/faq-bios-firmware.html
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-embedded-graphics-drivers/faq-bios-firmware.html
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-design-center.html
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-design-center.html
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-design-center.html
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-design-center.html
http://www/intel.com/fsp
http://www.coreboot.org

The actual path to place the Intel®
FSP binary depends on the coreboot
release. Please refer to the respec-
tive coreboot release information.

6.	 Update the microcode based on
the processor type on the platform.
Include the microcode into the fol-
lowing files in the /cpu directory:

microcode_blob.h
microcode_blob.inc

Contact your Intel representative for
the latest microcode patches.

7.	 Configure the payload using the fol-
lowing commands:

#cd coreboot
#make menuconfig

For more details about building a
payload, see
www.coreboot.org/Libpayload

8.	 The data region of the Intel® FSP
binary can be customized accord-
ing to the platform environment, if
needed, using the binary configura-
tion tool (BCT).

The base address of the Intel®
FSP binary can also be rebased, if
needed, using the BCT.

Download the BCT from
www.intel.com/fsp, and extract the
downloaded file.

9.	 Configure Error Checking and Cor-
rection (ECC) support if the platform
supports it. To determine if the
platform supports ECC, refer to the
Intel® FSP release note.

a. Enable or disable ECC support us-
ing the BCT.

b. Patch the Intel® FSP binary.

c. Rebuild the firmware stack with
the modified Intel® FSP binary.

Solving Technical Challenges

The following are some common
technical challenges that you
may encounter and their respec-
tive solutions.

1. Microcode Updates

Question:

Even though I know my CPUID is
0x306A9, I do not know where
to find the required microcode
update.

Solution:

Contact your Intel representative
for the latest microcode. Alter-
natlvely, visit the Intel support
portal at
https://businessportal.intel.com,
and search for the document if
you know the document ID.

2. Microcode Patches

Question:

I do not know what I need to
do with the raw text file for the
microcode patches.

Solution:

Create two files from the raw text
file, for example,

m12306a9_00000017.h and
m12306a9_00000017.inc

cat name.txt | awk ‘ {
print $1 ; print $2 ;
print $3; print $4 } ‘ >
name.h

cat name.txt | sed ‘s/,//’
| awk ‘ { print “ .long “
$1 } ‘

3. ME Integration

Question:

This issue relates to integrating
ME into the firmware:

I build coreboot by entering the
following command in a Linux
terminal:

#make

The final image (coreboot.rom)
is created in the directory
/coreboot/build. After pro-
gramming the Intel® FSP binary,
coreboot, and the payload into
the SPI-1 partition of the firm-
ware, the system does not boot.
The POST code is 0000, which
means nothing happened.

Solution:

Obtain the correct ME-enabled
firmware from the Intel Web site
(https://platformsw.intel.com/
home.aspx), and then program it
into the SPI-0 partition.

5

Intel® Firmware Support Package for Intel® Architecture

http://www.coreboot.org/Libpayload
http://www.intel.com/fsp
https://businessportal.intel.com
https://platformsw.intel.com/home.aspx
https://platformsw.intel.com/home.aspx

Conclusion

The adoption of the Internet of Things
concept, with devices communicat-
ing and collaborating via the Internet,
requires computing power in compact
devices that are expected to perform
specialized functions, such as digital
signages, kiosks, or digital security
surveillance. These specialized designs
may divert from the traditional PC
architecture; embedded developers
seek a firmware solution for Internet of
Things devices based on Intel® Archi-
tecture.

Cognizant of the needs of embedded
developers in their designs for Internet
of Things devices, Intel offers the Intel®

FSP solution. With the Intel® FSP binary
component performing the hardware
initialization of Intel silicon, embed-
ded developers have the flexibility to
decide the best approach to develop a
customized firmware for their designs.
They can either engage the services of
an Intel® FSP ecosystem partner to per-
form the customization and integration,
or customize the firmware themselves
by integrating the Intel® FSP binary into
an open source firmware stack of their
choice.

Intel® FSP has a long-term roadmap
that focuses on supporting processors
suitable for intelligent systems, such as
Internet of Things devices. Embedded
developers gain the benefit of greater

scalability in their designs as newer
and more capable processors will be
supported, which in turn accelerates
development time. In addition, they can
maximize cost efficiency as the Intel®
FSP solution is available for free to em-
bedded developers.

For releases of Intel® Firmware Support
Package for supported products,
including relevant support documenta-
tion, visit www.intel.com/fsp

	 1	A firmware stack is also known as a boot loader in some IoT designs.

	2	Some integration effort is needed.

	3	Actual size and execution speed depend on the product and debug option.

Get approval from Trademarks and Brands Legal at http://legal.intel.com/Trademarks/index.htm

		 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH
MAY OCCUR.

		 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of
any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

		 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by
visiting Intel’s Web site at www.intel.com.

		 Copyright © 2014 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
	*	Other names and brands may be claimed as the property of others.	Printed in Malaysia	 0814/DRK/SH/PDF Please Recycle 331015-001EN

Intel® Firmware Support Package for Intel® Architecture

	Executive Summary
	Expanding the Ecosystem of Custom System Firmware for Intel® Architecture
	Benefits
	Design Philosophy
	Unique Requirements of IoT
	Strategic Moves
	Why Binary?

	Creating Development Options
	Firmware Stack Sources
	Support Models

	Other Ingredients of Firmware Stacks Based on Intel® FSP
	Workflow Example to Integrate Intel® FSP into coreboot
	Solving Technical Challenges

	Conclusion

