

Recent cyber attacks have focused on the build process vulnerabilities. Find out

how to secure the DevOps pipeline to protect from these attacks.

Sidebar header

In this episode Steve Orrin and Darren
Pulsipher discuss why and how the
DevOps pipeline must be secured. The
only way to deliver solid, resilient, and
secure code is if security is built in, and
the earlier the better.

Video: Youtube Channel

Podcast: SoundCloud

A study from over 20 years ago on the return of security investment showed the earlier security

is built into the development cycle, the cheaper it is than waiting until the end of the cycle.

Although we have known this for two decades, it’s still a work in progress.

Most development companies have security as part of their overall development process, so

there has been a lot of headway, but it’s a journey, not a sprint. It’s about understanding all of

the different exposure points and weaknesses and being able to provide the right security

processes to those problems.

The Attack Vectors

Oftentimes people think of attacks as vulnerabilities of employees or packages, for example,

and forget the process part of the story. On the operation side is the time it takes to close a

vulnerability. On the other side is in the development and delivery of products. There are

various break points along that chain, and those have been exploited recently in the latest

stages of the build process. As far as customers were concerned, the code that was updated

was legitimate because it came right from the source. So we need to think carefully about

where to put security into the process.

Agile, CI/CD, DevOps,…Where is Security?

While we tend to look at needing security at the transitions from developer to QA, and from QA

to operations or deployment, security should really be injected into the whole build cycle, not

just at a few checkpoints. The approach should be continuous security.

Make Security Part of Every Phase

Continuous security is challenging. Most developers and QA aren’t security trained; this is an

uphill battle. The industry tried this approach in the early 2000s,but ran into three problems.

First, the turnover is too high. Second, the security landscape changes too rapidly to keep

them up to date, and third, since it’s not their day job, the right behavior was not incentivized.

How do we, then, integrate security into the process, automate the key things we want to do,

and get out of the way of developers so they can do their jobs, which is to build, test, and

deploy the code? The security process can really shine by building it into those automations

that you are already doing in DevOps such as automated unit testing, automated quality and

regression testing, automated build, and automated deployment. This will not solve all the

problems, but it will raise the bar significantly so you can focus on the hard challenges around

security

Case Study

Securing the DevOps Pipeline

https://youtu.be/U3XA7W5ToHc
https://soundcloud.com/embracingdigital/securing-your-devops-pipeline-42/s-G9wu61tJnbW

Means Security is Baked in, not a Single Step
or Stage

Some common tools already provide some automated security that

points out vulnerabilities. For example, GitHub will run security

checks on projects using Node.js code and all the included

packages. This can be helpful, but it is too late; the security should

be built into the pipeline before it gets checked in.

How Do We Get There?

Current security breaches highlight that security must be injected at

every stage of the process, including between build and production,

and right before the script runs to build the application. In addition

to injecting security into the build process, we need to secure the

build process itself; it’s been a gaping hole for a long time.

Many companies that do internal development are now taking a

closer look at their build process because of the recent breaches.

This is good, but it can’t stop with these knee-jerk reactions to each

attack. We need to think holistically and not wait for the next weak

link in the chain.

Some practical ways to secure the process are to treat the build

server as a critical asset in the overall infrastructure and apply the

same rules and controls to that server as you would for your core

systems. Proper credentials, firmware secure boot, verifying code,

auditing and logging the system, etc. throughout its life is then

building into the DevOps process when someone clicks the button.

From Solutions to Services and Beyond

Many people don’t think about the script itself as a target. It doesn’t

matter how many good modules are included if the script itself isn’t

protected. A few ways to protect the script is to run a checksum,

and it should be versioned, checked and signed. This adds

complexity for DevOps, but there are tools that can help.

Build Once, Deploy Everywhere

Just like we automate the development process, we can build in the

automation for implementing these controls and checks.

Automation prevents another person from potentially messing with

your builds, but we do also want to make sure there’s a human

receiving results and verifying audits.

The tools you are already using can be extended to add security

automation and checks such as those to do continuous

development integration for the Agile cycle, or automation tools in

the Linux world.

Organizations can also distribute their security people throughout

the business development teams so when things go wrong, security

people are already embedded in the process. Two places you want

to make sure you have security people are in infrastructure to

support, for example, your Agile process, and in product

management to get security requirements for the product

requirement definition phase before it even gets to a developer.

There is always a shortage of enough trained and capable security

people and also funding to hire the right people because of high

demand. A few options are to train the people you already have

and give them the necessary tools. You do not need a crypto guru

at every step of the process. Another possibility is instead of having

each coder be responsible for coding authentication, credentials,

and protocol in a secure build in an infrastructure library, have a

team build modules that are in your languages and your

environments that do all the security functions. The coder can pull

the module, and it handles the hard work. That way, you build once

and deploy everywhere.

We are seeing companies provide SaaS security tools, cloud-based

services that can be consumed for your application and your

runtime environment. This is a great step in the process. There are

companies that provide security injection points such as application

security in a fast style environment. These application checks such

as input sanitation and input validation can be embedded into your

functionalist environment, but that’s still waiting to the end.

Remember that the earlier in the process you start security, the

cheaper and less painful it becomes.

All of this does, of course, require more integration work.

Developers can be wary of the work involved, but if a framework

with built-in security exists (and there are prototypes out there such

as Ruby on Rails and certain cloud infrastructures), it can save

many hours. You still have to make sure, however, that you don’t

rely only on the platform for security, as it could be a single point of

failure.

Automation Sill Set You Free

The security breaches in the last six months have been profound.

Here are some key points of advice:

Security should be integral in the whole lifecycle from requirements

forward. Security must be in the DevOps cycle itself, not just in

coding and testing, but also in the infrastructure that drives that

process.

When building security tools and objects through modules, build

once, make it modular, and deploy everywhere.

Leverage services that let you rely on someone else’s expertise to

augment your own, underfunded, cyber team.

Automation will set you free. Automate as much as you can to

make security easier and faster and reduce friction for your

developers and testers. With automation, you can eliminate 80

percent of what we call the stupid stuff so you can spend your

limited resources on the hard problems.

Intel® technologies may require enabled hardware, software, or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

 © 2021 Intel Corporation

