Intel[®] Virtual RAID on CPU (Intel[®] VROC) Detailed Comparison to RAID HBA

Notices and Disclaimers

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Purpose:

Broad categorical comparison of Intel VROC (Integrated RAID) vs HW RAID HBAs on features, performance, latency, CPU% and power usage.

Agenda:

- 1. Architecture and Feature Comparison
- 2. Key findings
- 3. Intel[®] Optane[™] SSD Comparisons
- 4. Test Configuration Details
- 5. Pass-thru Mode (No RAID) Comparison
- 6. RAID0/1/5/10 Performance Results
- 7. Detailed RAID0/5 Review (Latency, CPU%, Power)

Architecture and Feature Comparison

Intel[®] VROC vs RAID HBA

RAID HBA

Product:

- MegaRAID 9560-16i Category:
 - HW RAID

PCle Generation:

• Gen. 4

Storage Uplink:

• x8 PCIe Lanes

Drives:

• 4 SSDs

Intel[®] VROC onboards RAID HBA functionality onto Intel[®] Xeon[®] CPUs¹

1-Intel VROC and Intel VMD are available on all generations (Gen. 1, 2 and 3) and SKUs (Bronze, Silver, Gold, and Platinum) of Intel Xeon Scalable Processor

Intel Optane Group

Intel[®] VROC vs RAID HBA

Major RAID Features	HW RAID	VROC	Intel [®] VROC Comment
Error Handling/Isolation	\checkmark	V	Both architectures isolates SSD error/event handling to reduce OS crash/reboot
Reliable data storage	\checkmark	\checkmark	Enterprise data protection, even when power loss occurs
Boot support	\checkmark	\checkmark	Redundant system volume = less down-time/crashes
In-band Management Tools	\checkmark	\checkmark	Various UEFI, GUI, and CLI Utilities for each
Out-of-band RAID Config.	V	×	Intel VROC has OOB on roadmap for upcoming releases
Full NVMe SSD x4 Bandwidth	X	V	Intel VROC + Intel VMD allows full x4 access to SSDs, no HW Uplink
RAID Processing Location	On HBA	On Intel [®] Xeon	Uses powerful Intel [®] Xeon [®] CPU to RAID the fast NVMe* SSDs. Better scaling for heavy workloads (see Detailed CPU Review)
Supported RAID Levels	0/1/5/6/10/50/60	0/1/5/10	RAID6/50/60 not needed for perf./AFR of NVMe SSDs
Write back cache	DRAM + BBU	Integrated Caching + Intel [®] Optane [™] SSD	Replace DRAM WB Cache + BBU with persistent Intel [®] Optane [™] media
SED Key Management	On HBA	Platform Integrated	Intel VROC uses platform protocols and remote KMS to manage keys
Idle Power ¹	577W	562W	Tested 15W reduction in Idle Power Usage with Intel VROC

See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks..

Key Findings

Summary (Highlights)^{1,2}

- 1. Intel VROC has **compelling features to replace RAID HBA**, plus a roadmap to fill any gaps (OOB)
- 2. Intel VROC is the only RAID solution that scales with the Intel Optane SSD solution to deliver extraordinary performance (**Over 5.6M IOPS!**)
- Intel VROC performance for all RAID levels is equal or better than RAID HBA (↑ Performance, ↓ Latency)
- Intel VROC can improve resource utilization by removing the HBA and related choke points (↓ CPU Usage, ↓ Power)
- Intel VROC has a scalable, integrated design that is better designed for NVMe SSDs
 (↑ IOPS/CPU Core, ↑ IOPS/W)

See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks..

Test Configuration Details

Test Configuration Details (Optane)

4 x 400GB Intel Optane P5800X SSDs

- Write Spec: 1,150,000 IOPS
- Read Spec: 1,500,000 IOPS

Tested Configurations:

- Single Drive Performance
- 4x Drives pass-thru in parallel (no RAID)
- 4x Drive RAID0/5/10
- 2x Drive RAID1

Workload Details:

- 4k Random: 70/30 R/W
- 16 Threads, 16 IODepth

Metrics

- Performance: IOPS
- Bandwidth: MB/sec
- Latency: µsec
- CPU Usage*: Effective Intel Xeon Cores used

Data on Slides 11-14

Test Configuration Details (NAND)

4x 3.84TB Intel D7 P5510 SSDs

- Write Spec: 170,000 IOPS
- Read Spec: 700,000 IOPS

Tested Configurations:

- Single Drive Performance
- 4x Drives pass-thru in parallel (no RAID)
- 4x Drive RAID0/5/10
- 2x Drive RAID1

Workload Details:

- 4k Random: 100% Reads, 70/30 R/W, 100% Writes
- 1 Threads, 1 IODepth (Isolate Storage Path)
- 16 Threads, 64 and 256 IODepth (Peak performance)

Metrics

- Performance: IOPS
- Power: Watts (Idle and under load)
- Latency: µsec
- CPU Usage*: Effective Intel Xeon Cores used

Data on slides15-28

*CPU Usage measured as total platform CPU % consumption, includes workload generation, storage stack (RAID) usage, and background activity Measured as "Cores Used" = CPU% report out * # cores on system (64 cores)

Intel Optane Comparisons

RAID Levels Performance Comparison¹

Intel[®] Optane[™] SSDs: 16 Thread, 16 IODepth: 70/30 R/W

Intel VROC achieves up to 5.6 million IOPS with RAID0 on mixed workloads

Intel VROC has up to: 161% more IOPS on RAID0 50% more IOPS on RAID5 248% more IOPS on RAID10 138% more IOPS on RAID1

Intel VROC RAID5 > HBA RAID10 performance

See backup for configuration details. Results may vary

RAIDO Simultaneous Read/Write Comparison¹

Intel[®] Optane[™] SSDs: 16 Thread, 16 IODepth: 70/30 R/W

Intel VROC RAID0 reads/writes provides:

- 个 IOPS
- ↓ Latency
- 🕹 CPU Usage
- **↑** Bandwidth

RAID0 provides higher performance metrics but with lower resource usage (CPU)

Up to 161% more Read/Write IOPS Up to 61% lower latency

RAID5 Simultaneous Read/Write Comparison¹

Intel[®] Optane[™] SSDs: 16 Thread, 16 IODepth: 70/30 R/W

Intel VROC RAID5 reads/write provides:

- 个 IOPS
- ↓ Latency
- ↑ CPU Usage*
- 🕹 Bandwidth

*RAID5 uses 4 more cores but delivers up to 380K additional IOPS

Up to 50% more Read/Write IOPS Up to 50% more Bandwidth

NAND SSD Comparisons

Pass-thru Mode (No RAID) Comparison

Low Workload, Pass-Thru Comparison²

NAND SSDs: 1 Thread, 1 IODepth

Intel VROC provides unimpeded access to storage for lower latency I/0

- Single Drive, 100% Write: {40% IOPS ↑, 32% Latency ↓}
- Single Drive, 100% Read: {29% IOPS ↑, 23% Latency ↓}

Single drive performance improvements scales to multiple drives

See backup for configuration details. Results may vary

Peak Performance, Pass-Thru Comparison²

NAND SSDs: 16 Thread, 64 IODepth

Higher workloads saturate the storage on both solutions

Latency differences are masked, performance becomes equivalent

Other architecture differences are exposed: Power and CPU usage

- Additional HBA power draw creates positive W∆; Intel VROC ↓ Power
- RAID HBA on card processing is oversaturated by larger workloads; Intel VROC
 CPU Usage (See detailed CPU Review)

RAID0/1/5/10 Performance Results

RAID Levels Performance Comparison²

NAND SSDs: 16 Thread, 64 IODepth

Intel VROC has 33% more IOPS on RAID5 writes

Intel VROC Read Performance scales to maximum 4x SSD Spec (~2.8M IOPS RAID0/5/10)

HBA hits 2.2M IOPS Bottleneck; Intel VROC delivers up to 27% more IOPS on RAID0/5/10 reads

Detailed RAIDO/5 Review (Latency, CPU%, Power)

RAIDO/5 Read Comparison²

NAND SSDs: 16 Thread, 64 IODepth

Intel VROC RAID0/5 reads provides:

- 个 IOPS
- ↓ Latency
- 🕹 CPU Usage
- **Verify Power Consumption**

Integrated RAID is a more effective RAID architecture for NVMe SSDs

Up to 30% more Read IOPS/W

Up to 164% more Read IOPS/CPU Cores Used

See backup for configuration details. Results may vary

RAID0/5 Write Comparison²

NAND SSDs: 16 Thread, 64 IODepth

Intel VROC RAID0/5 reads provides:

- **↑** IOPS
- ↓ Latency

RAID 0 also 🕹 CPU Usage and Power Usage

RAID5 provides higher performance metrics but with higher resource usage (CPU and Power)....

See 'CPU% Usage Explained' for more

See backup for configuration details. Results may vary

CPU% Usage Explained

CPU% Usage-Perception²

Common perception: RAID HBA consumes less host CPU resources due to HBA offload

Reality: Intel VROC can deliver \uparrow performance and consumes \downarrow CPU resources!

CPU% Usage-Reality Explained²

NVMe SSD performance can overwhelm RAID HBA offload design 16 Threads 64 IODepth \rightarrow 100k's Write IOPS and 1M's Read IOPS

HBA architecture has choke points that can bottleneck performance:

These limitations cause thrash on CPU%....and can lead to iowait%

See backup for configuration details. Results may vary

iowait% Closer Look²

NAND SSDs: 16 Thread, 64 IODepth \rightarrow 16 Thread, 256 IODepth

RAID5 writes require high CPU%

• Highest of any Intel VROC supported RAID level per IOP

RAID HBA offload generates iowait at higher workloads:

- If limits of HBA architecture are reached (more IO), host CPU usage ramps up in iowait%
- Iowait could be wasted cycles depending on application

Intel VROC is more efficient for RAID5 writes:

No ramping of iowait

Up to 4% more Write IOPS/CPU Cores Used*

*when accounting for iowait%

CPU% Usage-Customer Impact

Server design must plan for **Peak Storage Load**

Peak Storage Load (PSL): Max. IO during data center operation

RAID HBA

- Bottleneck performance
- Iowait% ramp and higher latency
- Operational Thrash if storage architecture not properly planned

Intel VROC

- Scale performance to absorb PSL
- Proportionally ramp CPU usage and latency
- Mitigate server thrash with fewer CPU cores dedicated for RAID

Intel VROC servers often require fewer CPU cores to handle Peak Storage Load

RAID Solution Response to PSL

Backup

Configuration Details

1. Intel VROC vs RADI HBA Comparison (Optane)

System configuration: Beta Coyote Pass M50CYP2SB2U/M50CYP2SBSTD (chassis M50CYP2UR208BPP), 2 x Intel[®] Xeon[®] Platinum 8358 CPU @ 2.60GHz, 32 cores each, DRAM 128GB, BIOS Release 04/02/2021, BIOS Version: SE5C6200.86B.0020.P24.2104020811

OS: RedHat* Enterprise Linux 8.1, kernel-4.18.0-147.el8.x86_64, mdadm - v4.1 - 2018-10-01, Intel[®] VROC Pre-OS version 7.5.0.1152

Storage: Both configurations used 4 x 400GB Intel Optane P5800X PCIe Gen4 U.2 SSDs (Model: SSDPF21Q400GB, Firmware: L0310100) connected to

backplane which is connected via SlimSAS cables directly to a Broadcom 9560-16i (x8) card on Riser 2, PCIe slot 1 on CPU2 BIOS setting:

SpeedStep(Enabled), Turbo(Enabled), ProcessorC6(Enabled), PackageC-State(C0/C1 State), CPU_PowerAndPerformancePolicy(Performance),

HardwareP-States(NativeMode), WorkloadConfiguration(I/O Sensitive)

RAID Configurations: 4-Disk RAID0/5/10 and 2-Disk RAID1 with Intel VROC and Broadcom MegaRAID 9560-16i

Workload Generator: FIO 3.25, 16-thread 16-IODepth

Performance results are based on testing as of 6/25/2021 and may not reflect all publicly available updates. See configuration disclosure for details. No product can be absolutely secure.

Configuration Details

2. Intel VROC vs RADI HBA Comparison (NAND)

System configuration: Beta Coyote Pass M50CYP2SB2U/M50CYP2SBSTD (chassis M50CYP2UR208BPP), 2 x Intel[®] Xeon[®] Platinum 8358 CPU @ 2.60GHz, 32 cores each, DRAM 128GB, BIOS Release 03/22/2021, BIOS Version: SE5C6200.86B.0022.D08.2103221623

OS: RedHat* Enterprise Linux 8.1, kernel-4.18.0-147.el8.x86_64, mdadm - v4.1 - 2018-10-01, Intel® VROC Pre-OS version 7.5.0.1152

Storage: Both configurations used 4x 3.84 TB Intel[®] D7-P5510 Series SSDs (Model: SSDPF2KX038TZ, Firmware: JCV10016) connected to internal

backplane. With Intel VROC config, backplane connect directly to CPU2 via SlimSAS. With RAID HBA, backplane connect to RAID HBA on Riser 2, PCI e slot 1 on CPU2

BIOS setting: SpeedStep(Enabled), Turbo(Enabled), ProcessorC6(Enabled), PackageC-State(C0/C1 State),

CPU_PowerAndPerformancePolicy(Performance), HardwareP-States(NativeMode), WorkloadConfiguration(I/O Sensitive)

RAID Configurations: 4-Disk RAID0/5/10 and 2-Disk RAID1 with Intel VROC and Broadcom MegaRAID 9560-16i

Workload Generator: FIO 3.25, 1-thread 1-IODepth, 16 thread 64/256 IODepth

Performance results are based on testing as of 5/3/2020 and may not reflect all publicly available updates. See configuration disclosure for details. No product can be absolutely secure.

intel