
One benchmark does not fit all workloads
The high-tech industry has traditionally relied on one or two benchmarks for a
simple, standardized way to assess CPU performance and, by extension, overall
system performance. IT decision makers (ITDMs) use these benchmarks to
choose the systems that best meet their price and performance requirements.
But performance requirements become more complex as workloads grow
increasingly diverse—and often more distributed, which brings memory and
network complexities of its own.

A system that performs well for traditional, general-purpose computing might
not be optimal for modern, cloud-native applications and other data-intensive
workloads that rely on system components beyond the CPU. A microservices
architecture can exacerbate the benchmarking challenge because of the
number of moving parts and the cascading latencies among those parts.

One step toward more effective benchmarking is to move beyond CPU
benchmarks like SPECrate 2017 Integer (SPECint)1 to also consider proxy
benchmarks that target specific workloads. These could include LINPACK for
supercomputing and the collection of TPC benchmarks for databases and
transaction processing systems. DeathStarBench is another example of a
workload-specific benchmark for microservices that exercises much more than
just core compute. But even these benchmarks might not accurately reflect a
system’s performance characteristics in a production setting.

Intel proposes a more systematic approach, which includes:

• Gathering telemetry data to better understand performance needs and hot
spots for a real-world workload

• Selecting an appropriate benchmark that will exercise the correct mix of
system components

This approach advocates choosing a benchmark with a similar “fingerprint”
to your real-world workload to help you more accurately identify systems on
which your workload will perform well.

Fundamentals of performance analysis
Sophisticated methods have been developed for CPU performance analysis
using telemetry data from performance monitoring units (PMUs), which capture
underlying microarchitectural events using hardware counters. These events
can be used to understand system behavior and the impact of an application’s
footprint on various aspects of the CPU, such as cache, memory, and translation
lookaside buffers (TLBs).

CPU Performance Analysis
Workload Benchmarking

Active Benchmarking for
Better Performance Predictions

Workload similarity analysis can help identify more meaningful benchmarks for
IT purchasing decisions.

By Harshad Sane, Principal Software Engineer, Intel

Up your
benchmarking game
Intel® processors have
built-in mechanisms for
monitoring performance at a
granular level. You can collect
this performance data and
use it to identify which
benchmarks are most similar
to your real-world workloads
in how they exercise different
system components.
Benchmarks with greater
similarity to your workloads
provide a better way to
identify systems that will
perform optimally running
those workloads.

Technical Brief

In the past, the primary purpose of such performance analysis has been for application developers to pinpoint critical
bottlenecks in application execution to optimize their applications for particular CPUs. However, Intel proposes a different use
for the same kind of analytics. This use can help IT organizations more accurately predict the capabilities of different CPUs and
systems to run existing real-world applications and workloads.

Every workload tends to use the components of the CPU in a way that can be captured by PMU telemetry and characterized
as the workload’s fingerprint. You can use performance analytics to compare the fingerprint of a real-world workload to the
fingerprints of different benchmarking systems in order to identify the best benchmarking match for the workload.

Tools such as PerfSpect enable the collection of PMU telemetry from the CPU while running a workload. One difficulty
arises from the sheer quantity of data generated by the PMUs and collected by the tools. It can be difficult to find the most
meaningful information amidst the mountain of performance data available. To solve this problem, Intel turns to a
top-down approach to performance analysis to help cut through the noise of excess data.

The idea is that to pinpoint a performance bottleneck, developers will first identify, at a high level, where the processor is
spending its time within the complex execution pipeline. They can then drill down through a hierarchical classification tree to
pinpoint the precise location of the bottleneck, as shown in Figure 1.

For the purpose of characterizing workloads, however, there is no real need to pinpoint specific bottleneck locations. Patterns
of performance are what define a workload fingerprint, and it turns out the top-level classifications—front-end bound and
back-end bound—provide sufficient information to identify such patterns.

Workload fingerprinting
There are two parts to the methodology for workload fingerprinting. First, the dataset is analyzed to determine which two
variables, or components, are the principal components that best represent the whole of the data in characterizing different
workloads. Second, workloads are plotted on the axes of the two principal components so that the similarity of workloads can
be seen by their proximity on the chart.

Technical Brief | Active Benchmarking for Better Performance Predictions

Figure 1. A hierarchical classification tree illustrates top-down performance analysis

FP-A
rith

O
ther

Base MS-ROM
Branch

Mspredict
Machine

clear

Pipeline slots

Not stalled

Front-end bound

Fetch
latency

Fetch
bandwidth

Core
bound

Memory
bound

Back-end boundRetiring Bad speculation

ITLB m
iss

Stores bound

L1 bound

L2 bound

L3 bound

Icache m
iss

Branch resteers

3+ ports

1 or 2 ports

0 ports

Fetch src 1

Fetch src 2

D
ivider

Execution ports
utilization

Extension m
em

ory
bound

Stalled

M
em

ory
latency

M
em

ory
bandw

idth

Scalar

Vector

Intel PMU: A rich source of performance counters
The Intel PMU is hardware built inside a processor to measure its performance parameters, including instruction cycles,
cache hits, cache misses, branch misses, and many others. The Intel PMU provides so many performance counters, in fact, that
it can be challenging to sift through all the data to find the most useful information. The data generated by the Intel PMU is
incredibly rich, and the method of compressing it and extracting insights described in this paper is a powerful way
to harness the large amount of available data meaningfully. Learn more about the Intel PMU and performance counters
at perfmon-events.intel.com.

2

https://github.com/intel/PerfSpect
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture
https://perfmon-events.intel.com/

Technical Brief | Active Benchmarking for Better Performance Predictions

Principal component analysis

An important concept for workload fingerprinting is principal component analysis (PCA), a method to reduce the number of
variables of a dataset while preserving as much information as possible. PCA allows you to visualize large datasets through a
reduced set of features in a compressed format. You might think of it like compressing a large bitmap of a photograph into a
much smaller JPEG file—some detail is lost if you zoom in, but the big picture remains clear.

The idea is to identify the top components that account for the greatest differentiation among workloads. Intel found that the
two principal components that best differentiate workloads are the degree to which a workload is front-end bound on one
hand, and the degree to which it is back-end bound on the other.

• Front-end bound: Stalls occur in fetching instructions from memory and translating them into micro-operations (µops).

• Back-end bound: Stalls occur in scheduling and executing (that is, “retiring”) those µops.

Ideally, the front end is always busy fetching and translating instructions and the back end is always busy executing µops.
Inefficiency occurs when the two are not in balance. When a system is front-end bound, instructions cannot be fetched and
queued as µops fast enough to keep the back end busy. When a system is back-end bound, the successful execution of µops is
not fast enough to keep the front end busy.

The fact that a system can be both front-end bound and back-end bound, each to a greater or lesser degree, makes it possible
to plot a workload on those two axes as a way of fingerprinting the workload on the system.

Workload similarity analysis

By plotting workload and
benchmark characteristics on
the two axes of the principal
components, you can
determine mathematically
(and visually) how similar the
components’ fingerprints are
to each other. Figure 2 shows
conceptually how workloads
with similar fingerprints
cluster together on the chart.

Intel used PerfSpect to
extract PMU information and
process top-down metrics
for dozens of real-world
customer workloads and
benchmarking tests. It then
used these metrics as input
data to run through PCA,
which consists of several
mathematical stages of
normalization, eigenvector
generation, and so on.
This produced the
representative principal components for each workload, plotted in Figure 3.

Figure 3 positions workloads that are more back-end bound farther to the left, and those that are more front-end bound
closer to the bottom. Workloads near each other on this chart show similar microarchitectural behavior, while larger distances
indicate a higher dissimilarity of workloads. Figure 3 draws lines around groups of workloads as a visual aid to highlight
the clustering effects. Clearly the real-world customer workloads (red) were much more back-end bound than the SPECint
benchmarks (blue). The customer workloads aligned much more closely with the cloud-native benchmarks (green), though
customer workloads tend to be somewhat less front-end bound.

Intel completed similarity analysis for dozens of workloads and benchmarks in order to demonstrate the usefulness of the
method. A systems analyst would not need to plot so many data points, but might be interested in comparing the similarities
of one or two heavy workloads to a few benchmarks already in use or under consideration.

The fact that SPECint forms a cluster very different from the real workloads shows the importance of identifying proxy
workloads that exhibit similar properties.

Figure 2. Conceptual mockup showing clusters of similar workloads plotted on two
principal component axes

+++ +++
+++++++ ++

++
+++

++++
++++++
+++
++++

Fr
on

t-
en

d
bo

un
d

Back-end bound

3

Example case
Consider one pair of data points from the set in Figure 3 as a representative example of the kind of similarity analysis
a system architect might want to perform. Suppose the customer using Aerospike, an in-memory open source NoSQL
database-management system (DBMS), wants to purchase a new SKU for the data center to run that workload. Perhaps
SPECint is the benchmark system that the system architect used in the past for such decisions, but she wants to determine
if it’s the most appropriate benchmark for this workload. Upon running a similarity analysis on the Aerospike workload
and the 531.deepsjeng component of SPECint, a chess application tree-search benchmark, it becomes apparent that the
Aerospike workload and 531.deepsjeng are on opposite ends of the back-end bound spectrum. The Aerospike workload is
highly back-end bound compared to the benchmark. This would be a good clue for the system architect to look for a more
fitting benchmark.

But this system architect might want to better understand the nature of the mismatch between the Aerospike workload and
the benchmark test. And here it’s important to note that while the chart plots similarity on only two dimensions, those axes
are representative of a large number of data points. All the PMU telemetry data was collected, so it is possible to drill down
into the details.

Metric 531.deepsjeng Aerospike

cpu_operating_frequency_GHz 2.92 2.70

cpu_utilization_% 96.65 100.01

cpi 0.91 3.88

frontend_bound_% 24.93 24.97

backend_bound_% 5.79 54.50

L1_bound_% 16.65 17.36

L2_bound_% 1.00 2.21

L3_bound_% 0.95 5.29

mem_bound_% 4.37 11.39

mem_bandwidth_% 0.00 0.27

mem_latency_% 4.54 11.49

retiring_% 53.57 18.30

Technical Brief | Active Benchmarking for Better Performance Predictions

Table 1. Metrics behind the similarity analysis show where the differences are greatest

Fr
on

t-
en

d
bo

un
d

Back-end bound

Workload similarity analysis

SPECint benchmarksCustomer workloads

Cloud-native benchmarks
Retiring

wordpress-6248R

526.blender

527.cam4502.gcc

508.namd
521.wrf

Kafka-CLX

Gaming

Java

SpecJBB

557.xz

520.omnetpp

531.deepsjeng

541.leela

544.nab 525.x264

538.imagick

507.cactuBSSN

CDN

554.roms519.lbm

549.fotonik3d

500.perlbench

548.exchange2

503.bwaves

DeathStarBench-CLX-1node

Gaming

VideoStreaming

510.parest

SpeechProcessing

JavaDB

kmeans-6248R

Rendering

523.xalancbmk

505.mcf

Database

Memcached-CLX

Aerospike

SpecJBB-6252-Default Search

Hadoop

RocksDB-CLX

PostGreSQl-HammerDB-AWSm5

Aerospike-CLX

MongoDB-AWS-C5d-CLX

511.povray

resnet-6248R

Customer workload environment Cloud-native benchmarks SPEC benchmarks

Figure 3. Real-world workloads and benchmarks cluster by similarity

4

Technical Brief | Active Benchmarking for Better Performance Predictions

Table 1 shows some of the metrics used to generate the principal components. The table shows that although both workloads
run at the same frequency and CPU utilization percentage and are similarly front-end bound, the Aerospike workload is highly
back-end bound by comparison. Moreover, most of the back-end inefficiency can be traced down to being memory-bound,
and especially memory-latency-bound compared to the SPECint component.

The takeaway is that although the CPU is exercised at the same level, the components within the CPU are stressed in
completely different ways. This helps the systems architect understand at a more granular level why that particular
benchmark test is not ideal for evaluating how well different systems will perform on the company’s Aerospike workload.

Conclusion
IT organizations using benchmark tests to evaluate hardware system purchases would be well advised to assess their
benchmarks first. Today’s workloads are complex, and a broad spectrum of components will contribute to the optimal
performance for any given workload. If a benchmark is not similar to a real-world workload, the benchmark results will mean
little. If you choose a benchmark with a similar footprint to your target workload, and then use that similar benchmark to
evaluate alternative CPUs and systems, then high performance on that benchmark will be a good predictor of optimized
performance on your real-world workload.

The method demonstrated in this paper for conducting workload similarity analysis is not just theoretical. The code has
been developed, and you can run your own workload-similarity analyses using a collection of open source tools
at https://github.com/intel/PerfSpect.

Learn more
Read the white paper, “A Top-Down Method for Performance Analysis and Counters Architecture,” at
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_
counters_architecture, written by Ahmad Yasin, Principal Engineer at Intel and originator of the TMA method featured
as a part of this analysis.

Find out more about how Intel provides greater flexibility in how you utilize the cloud, optimize costs, and improve
efficiency:

• Cloud tools: intel.com/content/www/us/en/cloud-computing/cloud-tools.html

• Cloud computing overview: intel.com/content/www/us/en/cloud-computing/overview.html

• Similarity Analyzer: https://github.com/intel/PerfSpect/tree/master/similarity-analyzer

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

Printed in USA 0322/DR/PRW/PDF Please Recycle 350211-001US

1 SPEC is a registered trademark of Standard Performance Evaluation Corporation. See https://spec.org/spec/trademarks.html.

5

https://github.com/intel/PerfSpect
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture
https://www.researchgate.net/publication/269302126_A_Top-Down_method_for_performance_analysis_and_counters_architecture
https://www.intel.com/content/www/us/en/cloud-computing/cloud-tools.html
https://www.intel.com/content/www/us/en/cloud-computing/overview.html
https://github.com/intel/PerfSpect/tree/master/similarity-analyzer
https://spec.org/spec/trademarks.html

