
Intel® ISA-L: Semi-Dynamic Compression
Algorithms

By Thai Le (Intel), Steven B. (Intel), Added December 29, 2016

Download Code Sample

Download PDF

Introduction

DEFLATE compression algorithms traditionally use either a dynamic or static compression

table. Those who want the best compression results use a dynamic table at the cost of more

processing time, while the algorithms focused on throughput will use static tables. The Intel®

Intelligent Storage Acceleration Library (Intel® ISA-L) semi-dynamic compression comes close

to getting the best of both worlds. In addition, Intel® ISA-L offers a version of the

decompression (inflate) algorithm which substantially improves the decompression performance.

Testing shows the usage of semi-dynamic compression and decompression is only slightly

slower than using a static table and almost as space-efficient as algorithms that use dynamic

tables. This article's goal is to help you incorporate Intel ISA-L’s semi-dynamic compression and

optimized decompression algorithms into your storage application. It describes prerequisites for

using Intel ISA-L, and includes a downloadable code sample, with full build instructions. The

code sample is a compression and decompression tool that can be used to compare the ration and

performance of Intel ISA-L’s semi-dynamic compression algorithm on a public data set with the

standard DEFLATE implementation, zlib*.

Hardware and Software Configuration

CPU and

Chipset

Intel® Xeon® processor E5-2699 v4, 2.2 GHz

 Number of cores per chip: 22 (only used single core)

 Number of sockets: 2

 Chipset: Intel® C610 series chipset, QS (B-1 step)

 System bus: 9.6 GT/s Intel® QuickPath Interconnect

 Intel® Hyper-Threading Technology off

 Intel SpeedStep® technology enabled

https://software.intel.com/en-us/user/336165
https://software.intel.com/en-us/user/779808
https://software.intel.com/en-us/articles/intel-isa-l-semi-dynamic-compression-algorithms#Code sample download
https://software.intel.com/sites/default/files/managed/36/a4/intel-isa-l-semi-dynamic-compression-algorithms.pdf
https://en.wikipedia.org/wiki/DEFLATE
https://software.intel.com/en-us/storage/ISA-L
https://software.intel.com/en-us/storage/ISA-L

 Intel® Turbo Boost Technology disabled

Platform Platform: Intel® Server System R2000WT product family (code-

named Wildcat Pass)

 BIOS: GRRFSDP1.86B.0271.R00.1510301446 ME:V03.01.03.0018.0

BMC:1.33.8932

 DIMM slots: 24

 Power supply: 1x1100W

Memory Memory size: 256 GB (16X16 GB) DDR4 2133P

Brand/model: Micron – MTA36ASF2G72PZ2GATESIG

Storage Brand and model: 1 TB Western Digital (WD1002FAEX)

Intel® SSD Data Center P3700 Series (SSDPEDMD400G4)

Operating

System

Ubuntu* 16.04 LTS (Xenial Xerus)

Linux* kernel 4.4.0-21-generic

Note: Depending on the platform capability, Intel ISA-L can run on various Intel® processor

families. Improvements are obtained by speeding up the computations through the use of the

following instruction sets:

 Intel® Advanced Encryption Standard New Instruction (Intel® AES-NI)

 Intel® Streaming SIMD Extensions (Intel® SSE)

 Intel® Advanced Vector Extensions (Intel® AVX)

 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Why Use Intel® Intelligent Storage Library (Intel® ISA-L)?

Intel ISA-L has the ability to compress and decompress faster than zlib* with only a small

sacrifice in the compression ratio. This capability is well suited for high throughput storage

applications. This article includes a sample application that simulates a compression and

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
https://software.intel.com/en-us/articles/using-intel-streaming-simd-extensions-and-intel-integrated-performance-primitives-to-accelerate-algorithms
https://software.intel.com/en-us/blogs/2014/02/27/how-intel-avx-improves-performance-on-server-application
https://software.intel.com/en-us/articles/how-intel-avx2-improves-performance-on-server-applications

decompression scenario where the output will show the efficiency. Click on the button at the top

of this article to download.

Prerequisites

Intel ISA-L supports Linux and Microsoft Windows*. A full list of prerequisite packages can be

found here.

Building the sample application (for Linux):

1. Install the dependencies:

o a c++14 compliant c++ compiler

o cmake >= 3.1

o git

o autogen

o autoconf

o automake

o yasm and/or nasm

o libtool

o boost's "Filesystem" library and headers

o boost's "Program Options" library and headers

o boost's "String Algo" headers

>sudo apt-get update
>sudo apt-get install gcc g++ make cmake git zlib1g-dev autogen autoconf

automake yasm nasm libtool libboost-all-dev

2. You also need the latest versions of isa-l and zlib. The get_libs.bash script can be used to get

them. The script will download the two libraries from their official GitHub* repositories, build

them, and then install them in `./libs/usr` directory.

>`bash ./libs/get_libs.bash`

3. Build from the `ex1` directory:

o `mkdir <build-dir>`

o `cd <build-dir>`

o `cmake -DCMAKE_BUILD_TYPE=Release $OLDPWD`

https://github.com/01org/isa-l#build-prerequisites

o `make`

Getting Started with the Sample Application

The sample application contains the following files:

This example goes through the following steps at a high-level work flow and focuses on the

“main.cpp”, “bm_isal.cpp”, and “bm_isal_semidyn.cpp" files:

Setup

1. In the “main.cpp” file, the program parses the command line and displays the options that are

going to be performed.

int main(int argc, char* argv[])

{

 options options = options::parse(argc, argv);

Parsing the option of the command line

2. In the options.cpp file, the program parses the command line arguments using

`options::parse()`.

Create the benchmarks object

3. In the “main.cpp” file, the program will benchmark each raw file using a compression-level

inside the benchmarks::add_benchmark() function. Since the benchmarks do not run

concurrently, there is only one file “pointer” created.

benchmarks benchmarks;

// adding the benchmark for each files and libary/level combination

 for (const auto& path : options.files)

 {

 auto compression = benchmark_info::Method::Compression;

 auto decompression = benchmark_info::Method::Decompression;

 auto isal_static = benchmark_info::Library::ISAL_STATIC;

 auto isal_semidyn = benchmark_info::Library::ISAL_SEMIDYN;

 auto zlib = benchmark_info::Library::ZLIB;

 benchmarks.add_benchmark({compression, isal_static, 0, path});

 benchmarks.add_benchmark({decompression, isal_static, 0, path});

 if (options.isal_semidyn_stateful)

 {

 benchmarks.add_benchmark({compression, isal_semidyn, 0, path});

 benchmarks.add_benchmark({decompression, isal_semidyn, 0, path});

 }

 if (options.isal_semidyn_stateless)

 {

 benchmarks.add_benchmark({compression, isal_semidyn, 1, path});

 benchmarks.add_benchmark({decompression, isal_semidyn, 1, path});

 }

 for (auto level : options.zlib_levels)

 {

 if (level >= 1 && level <= 9)

 {

 benchmarks.add_benchmark({compression, zlib, level, path});

 benchmarks.add_benchmark({decompression, zlib, level, path});

 }

 else

 {

 std::cout << "[Warning] zlib compression level " << level
<< "will be ignored\n";

 }

 }

 }

Intel® ISA-L compression and decompression

4. In the “bm_isal.cpp” file, the program performs the static compression and decompression on

the raw file using a single thread. The key functions to note are isal_deflate and isal_inflate. Both

functions accept a stream as an argument, and this data structure holds the data about the input

buffer, the length in bytes of the input buffer, and the output buffer and the size of the output

buffer. end_of_stream indicates whether it will be last iteration.

std::string bm_isal::version()

{

 return std::to_string(ISAL_MAJOR_VERSION) + "." +

std::to_string(ISAL_MINOR_VERSION) + "." +

 std::to_string(ISAL_PATCH_VERSION);

}

bm::raw_duration bm_isal::iter_deflate(file_wrapper* in_file, file_wrapper*

out_file, int /*level*/)

{

 raw_duration duration{};

 struct isal_zstream stream;

 uint8_t input_buffer[BUF_SIZE];

 uint8_t output_buffer[BUF_SIZE];

 isal_deflate_init(&stream);

 stream.end_of_stream = 0;

 stream.flush = NO_FLUSH;

 do

 {

 stream.avail_in = static_cast<uint32_t>(in_file-

>read(input_buffer, BUF_SIZE));

 stream.end_of_stream = static_cast<uint32_t>(in_file->eof());

 stream.next_in = input_buffer;

 do

 {

 stream.avail_out = BUF_SIZE;

 stream.next_out = output_buffer;

 auto begin = std::chrono::steady_clock::now();

 isal_deflate(&stream);

 auto end = std::chrono::steady_clock::now();

 duration += (end - begin);

 out_file->write(output_buffer, BUF_SIZE - stream.avail_out);

 } while (stream.avail_out == 0);

 } while (stream.internal_state.state != ZSTATE_END);

 return duration;

}

bm::raw_duration bm_isal::iter_inflate(file_wrapper* in_file, file_wrapper*

out_file)

{

 raw_duration duration{};

 int ret;

 int eof;

 struct inflate_state stream;

 uint8_t input_buffer[BUF_SIZE];

 uint8_t output_buffer[BUF_SIZE];

 isal_inflate_init(&stream);

 stream.avail_in = 0;

 stream.next_in = nullptr;

 do

 {

 stream.avail_in = static_cast<uint32_t>(in_file->read(input_buffer,

BUF_SIZE));

 eof = in_file->eof();

 stream.next_in = input_buffer;

 do

 {

 stream.avail_out = BUF_SIZE;

 stream.next_out = output_buffer;

 auto begin = std::chrono::steady_clock::now();

 ret = isal_inflate(&stream);

 auto end = std::chrono::steady_clock::now();

 duration += (end - begin);

 out_file->write(output_buffer, BUF_SIZE - stream.avail_out);

 } while (stream.avail_out == 0);

 } while (ret != ISAL_END_INPUT && eof == 0);

 return duration;

}

5. In the “bm_isal_semidyn.cpp” file, the program performs the dynamic compression and

decompression on the raw file using multiple threads.

Std::string bm_isal_semidyn::version()

 {

 return std::to_string(ISAL_MAJOR_VERSION) + “.” +

std::to_string(ISAL_MINOR_VERSION) + “.” +

 std::to_string(ISAL_PATCH_VERSION);

 }

 bm::raw_duration

 bm_isal_semidyn::iter_deflate(file_wrapper* in_file, file_wrapper*

out_file, int config)

 {

 raw_duration duration{};

 bool stateful = (config == 0);

 struct isal_zstream stream;

 struct isal_huff_histogram histogram;

 struct isal_hufftables hufftable;

 long in_file_size = in_file->size();

 uint8_t* input_buffer = new (std::nothrow) uint8_t[in_file_size];

 if (input_buffer == nullptr)

 return raw_duration{0};

 long out_buffer_size = std::max((int)(in_file_size * 1.30), 4 * 1024);

 uint8_t* output_buffer = new (std::nothrow) uint8_t[out_buffer_size];

 if (output_buffer == nullptr)

 return raw_duration{0};

 stream.avail_in = static_cast<uint32_t>(in_file->read(input_buffer,

in_file_size));

 if (stream.avail_in != in_file_size)

 return raw_duration{0};

 int segment_size = SEGMENT_SIZE;

 int sample_size = SAMPLE_SIZE;

 int hist_size = sample_size > segment_size ? segment_size :
sample_size;

 if (stateful)

 isal_deflate_init(&stream);

 else

 isal_deflate_stateless_init(&stream);

 stream.end_of_stream = 0;

 stream.flush = stateful ? SYNC_FLUSH : FULL_FLUSH;

 stream.next_in = input_buffer;

 stream.next_out = output_buffer;

 if (stateful)

 stream.avail_out = out_buffer_size;

 int remaining = in_file_size;

 int chunk_size = segment_size;

 while (remaining > 0)

 {

 auto step = std::chrono::steady_clock::now();

 memset(&histogram, 0, sizeof(struct isal_huff_histogram));

 duration += std::chrono::steady_clock::now() – step;

 if (remaining < segment_size * 2)

 {

 chunk_size = remaining;

 stream.end_of_stream = 1;

 }

 step = std::chrono::steady_clock::now();

 int hist_rem = (hist_size > chunk_size) ? chunk_size : hist_size;

 isal_update_histogram(stream.next_in, hist_rem, &histogram);

 if (hist_rem == chunk_size)

 isal_create_hufftables_subset(&hufftable, &histogram);

 else

 isal_create_hufftables(&hufftable, &histogram);

 duration += std::chrono::steady_clock::now() – step;

 stream.avail_in = chunk_size;

 if (!stateful)

 stream.avail_out = chunk_size + 8 * (1 + (chunk_size >> 16

 stream.hufftables = &hufftable;

 remaining -= chunk_size;

 step = std::chrono::steady_clock::now();

 if (stateful)

 isal_deflate(&stream);

 else

 isal_deflate_stateless(&stream);

 duration += std::chrono::steady_clock::now() – step;

 if (stateful)

 {

 if (stream.internal_state.state != ZSTATE_NEW_HDR)

 break;

 }

 else

 {

 if (stream.avail_in != 0)

 break;

 }

 }

 if (stream.avail_in != 0)

 return raw_duration{0};

 out_file->write(output_buffer, stream.total_out);

 delete[] input_buffer;

 delete[] output_buffer;

 return duration;

 }

 bm::raw_duration bm_isal_semidyn::iter_inflate(file_wrapper* in_file,

file_wrapper* out_file)

 {

 raw_duration duration{};

 int ret;

 int eof;

 struct inflate_state stream;

 uint8_t input_buffer[INFLATE_BUF_SIZE];

 uint8_t output_buffer[INFLATE_BUF_SIZE];

 isal_inflate_init(&stream);

 stream.avail_in = 0;

 stream.next_in = nullptr;

 do

 {

 stream.avail_in = static_cast<uint32_t>(in_file->read(input_buffer,

INFLATE_BUF_SIZE));

 eof = in_file->eof();

 stream.next_in = input_buffer;

 do

 {

 stream.avail_out = INFLATE_BUF_SIZE;

 stream.next_out = output_buffer;

 auto begin = std::chrono::steady_clock::now();

 ret = isal_inflate(&stream);

 auto end = std::chrono::steady_clock::now();

 duration += (end – begin);

 out_file->write(output_buffer, INFLATE_BUF_SIZE –

stream.avail_out);

 } while (stream.avail_out == 0);

 } while (ret != ISAL_END_INPUT && eof == 0);

 return duration;

 }

6. When all compression and decompression tasks are complete, the program displays the results

on the screen. All temporary files are deleted using benchmarks.run().

Execute the sample application

In this example, the program will run through the compression and decompression functions of

the Intel ISA-L and zlib. For Intel ISA-L functions, the results will show both static and semi-

dynamic compression and decompression.

Run

From the ex1 directory:

cd <build-bir>/ex1

./ex1 --help

Usage

Usage: ./ex1 [--help] [--folder <path>]... [--file <path>]... :

 --help display this message

 --file path use the file at 'path'

 --folder path use all the files in 'path'

 --zlib-levels n,... coma-separated list of compression level [1-9]

 --semidyn-config flag,... coma-separated list of flags for the semi-dynamic

 compression ('stateful', 'stateless') [stateful]

• --file and --folder can be used multiple times to add more files to the

benchmark

• --folder will look for files recursively

• the default --zlib-level is 6

Test corpuses are public data files designed to test the compression and decompression

algorithms, which are available online (for example, Calgary and Silesia corpuses). The --folder

option can be used to easily benchmark them: ./ex1 --folder /path/to/corpus/folder.

Running the example

http://corpus.canterbury.ac.nz/descriptions/#calgary
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Here is an example of how to run the application:

./ex1 –zlib-levels 4,6,8 –file corpuses/silesia/mozilla

Program output displays a column for the compression library, either ‘isa-l’ or ‘zlib’. The table

shows the compression ratio (compressed file/raw file), and the system and processor time that it

takes to perform the operation. For decompression, it just measures the elapsed time for the

decompression operation. All the data was produced on the same system. Both results for Intel

ISA-L results of static and semi-dynamic compression and decompression are displayed in the

table.

Notes: 2x Intel® Xeon® processor E5-2699v4 (HT off), Intel® Speed Step enabled, Intel® Turbo

Boost Technology disabled, 16x16GB DDR4 2133 MT/s, 1 DIMM per channel, Ubuntu* 16.04

LTS, Linux kernel 4.4.0-21-generic, 1 TB Western Digital* (WD1002FAEX), 1 Intel® SSD

P3700 Series (SSDPEDMD400G4), 22x per CPU socket. Performance measured by the written

sample application in this article.

Conclusion

This tutorial and its sample application demonstrates one method through which you can

incorporate the Intel ISA-L static and semi-dynamic compression and decompression features

into your storage application. The sample application’s output data shows there is a balancing act

between processing time (CPU time) and disk space. It can assist you in determining which

compression and decompression algorithm best suits your requirements, then help you to quickly

adapt your application to take advantage of Intel® Architecture with the Intel ISA-L.

Other Useful Links

 Accelerating your Storage Algorithms using Intelligent Storage Acceleration Library (ISA-L)

video

 Accelerating Data Deduplication with ISA-L blog post

Authors

Thai Le is a software engineer who focuses on cloud computing and performance computing

analysis at Intel.

Steven Briscoe is an application engineer focusing on cloud computing within the Software

Services Group at Intel Corporation (UK).

Notices

System configurations, SSD configurations and performance tests conducted are discussed in

detail within the body of this paper. For more information go

to http://www.intel.com/content/www/us/en/benchmarks/intel-product-performance.html.

This sample source code is released under the Intel Sample Source Code License Agreement.

There are downloads available under the Intel® Software Export Warning license.Download

Now

intel-isa-l-semi-dynamic-compression-algorithms.pdf (1000.22 KB)Download Now

For more complete information about compiler optimizations, see our Optimization Notice.

https://www.brighttalk.com/webcast/10773/179977
https://www.brighttalk.com/webcast/10773/179977
https://software.intel.com/en-us/articles/accelerate-data-deduplication-using-chunking-and-hashing-functions
http://www.intel.com/content/www/us/en/benchmarks/intel-product-performance.html
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement
https://software.intel.com/en-us/node/676750
https://software.intel.com/protected-download/676750/706441
https://software.intel.com/protected-download/676750/706441
https://software.intel.com/sites/default/files/managed/36/a4/intel-isa-l-semi-dynamic-compression-algorithms.pdf
https://software.intel.com/sites/default/files/managed/36/a4/intel-isa-l-semi-dynamic-compression-algorithms.pdf
https://software.intel.com/en-us/articles/optimization-notice#opt-en

