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1 Introduction
The Embedded Design Handbook complements the primary documentation for the
Intel tools for embedded system development. It describes how to most effectively
use the tools, and recommends design styles and practices for developing, debugging,
and optimizing embedded systems using Intel-provided tools. The handbook
introduces concepts to new users of Intel’s embedded solutions, and helps to increase
the design efficiency of the experienced user.

1.1 Document Revision History

Table 1. Introduction Chapter Revision History

Date Version Changes

December 2016 2016.12.19 Maintenance release.

December 2015 2015.12.18 Initial release.

1 Introduction

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


2 First Time Designer's Guide
First Time Designer’s Guide is a basic overview of Intel embedded development
process and tools for the first time user. The chapter provides information about the
design flow and development tools, interactions, and describes the differences
between the Nios II processor flow and a typical discrete microcontroller design flow.

This guide does not replace the basic reference material for the first time designer. It
references other documents that provide detailed information about the individual
tools and procedures. It contains resources and sections to help the first-time user of
Intel’s embedded development tools for hardware and software development. For
more information, refer to the related information links.

Related Links

• Nios II Classic Processor Reference Guide

• Nios II Gen2 Processor Reference Guide

• Nios II Classic Software Developer's Handbook

• Nios II Gen2 Software Developer's Handbook

• Embedded Peripherals IP User Guide

• Qsys System Development

• Nios II Flash Programmer User Guide

2.1 FPGAs and Soft-Core Processors

FPGAs can implement logic that functions as a complete microprocessor while
providing many flexibility options.

An important difference between discrete microprocessors and FPGAs is that an FPGA
contains no logic when it powers up. Before you run software on a Nios II based
system, you must configure the FPGA with a hardware design that contains a Nios II
processor. To configure an FPGA is to electronically program the FPGA with a specific
logic design. The Nios II processor is a true soft-core processor: it can be placed
anywhere on the FPGA, depending on the other requirements of the design. Two
different sizes of the processor are available for Nios II Gen2, each with flexible
features.1

To enable your FPGA-based embedded system to behave as a discrete microprocessor-
based system, your system should include the following:

• A JTAG interface to support FPGA configuration and hardware and software
debugging

• A power-up FPGA configuration mechanism

1 There are three different sizes of the processor that are available for Nios II Classic.
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If your system has these capabilities, you can begin refining your design from a
pretested hardware design loaded in the FPGA. Using an FPGA also allows you to
modify your design quickly to address problems or to add new functionality. You can
test these new hardware designs easily by reconfiguring the FPGA using your system's
JTAG interface.

The JTAG interface supports hardware and software development. You can perform the
following tasks using the JTAG interface:

• Configure the FPGA

• Download and debug software

• Communicate with the FPGA through a UART-like interface (JTAG UART)

• Debug hardware (with the SignalTap® II embedded logic analyzer)

• Program flash memory

After you configure the FPGA with your Nios II processor-based design, the software
development flow is similar to the flow for discrete microcontroller designs.

2.2 Embedded System Design

Whether you are a hardware designer or a software designer, read the Nios II
Hardware Development Tutorial to start learning about designing embedded systems
on an Intel FPGA. The “Nios II System Development Flow” section is particularly useful
in helping you to decide how to approach system design using Intel's embedded
hardware and software development tools. Intel recommends that you read this
tutorial before starting your first design project. The tutorial teaches you the basic
hardware and software flow for developing Nios II processor-based systems.

Designing with FPGAs gives you the flexibility to implement some functionality in
discrete system components, some in software, and some in FPGA-based hardware.
This flexibility makes the design process more complex. The Qsys system design tool
helps to manage this complexity. Even if you decide a soft-core processor does not
meet your application's needs, Qsys can still play a vital role in your system by
providing mechanisms for peripheral expansion or processor offload.

The figure below illustrates the overall Nios II system design flow, including both
hardware and software development. This illustration is greatly simplified. There are
numerous correct ways to use the Intel tools to create a Nios II system.
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Figure 1. General Nios II System Design Flow
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Related Links

• Hardware System Design with Quartus Prime and Qsys on page 13

• Software System Design with a Nios II Processor on page 117
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2.3 Embedded Design Resources

This section contains a list of resources to help you find design help. Your resource
options include traditional Intel-based support such as online documentation, training,
and My Support, as well as web-based forums and Wikis. The best option depends on
your inquiry and your current stage in the design cycle.

2.3.1 Intel Embedded Support

Intel recommends that you seek support in the following order:

1. Look for relevant literature on the Intel Documentation page, especially on the
Documentation: Nios II Processor page.

2. Contact your local Intel sales office or sales representative, or your field
application engineer (FAE).

3. Contact technical support through the myAltera page of the Intel website to get
support directly from Intel.

4. Consult one of the following community-owned resources:

• The Nios Forum, available on the Altera Forum website

• The Altera Wiki website

• Rocketboards for Linux support

Note: Intel is not responsible for the contents of the Nios Forum and Altera Wiki
websites, which are maintained by public authors and experts outside of
Intel.

Related Links

• Intel FPGA Documentation

• myAltera

• Altera Forum

• Altera Wiki

• Documentation: Nios II Processor

• Rocketboards

2.3.2 Intel Embedded Training

To learn how the tools work together and how to use them in an instructor-led
environment, register for training. Several training options are available. For
information about general training, refer to the Training page of the Intel website.

For detailed information about available courses and their locations, visit the
Embedded SW Designer Curriculum page of the Intel FPGA website. This page
contains information about both online and instructor-led training.

Related Links

• Intel FPGA Training

• Embedded SW Designer Curriculum
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2.3.3 Intel Embedded Documentation

You can access documentation about the Nios II processor and embedded design from
your Nios II EDS installation directory at <Nios II EDS install dir>\documents
\index.htm. To access this page directly on Windows platforms, on the Start menu,
click All Programs. On the All Programs menu, on the Intel submenu, on the Nios II
EDS <version> submenu, click Nios II<version>Documentation. This web page
contains links to the latest Nios II documentation.

The Documentation: Nios II Processor page of the Intel website includes a list and
links to available documentation. At the bottom of this page, you can find links to
various product pages that include Nios II processor online demonstrations and
embedded design information.

The other chapters in the Embedded Design Handbook are a valuable source of
information about embedded hardware and software design, verification, and
debugging. Each chapter contains links to the relevant overview documentation.

Related Links

Documentation: Nios II Processor

2.3.4 Third Party Intellectual Property

Many third parties have participated in developing solutions for embedded designs
with Intel FPGAs through the Intel AMPPSM Program. For up-to-date information about
the third-party solutions available for the Nios II processor, visit the Nios II Processor
page of the Intel website, and select the Ecosystem tab.

Several community forums are also available. These forums are not controlled by
Intel. The Altera Forum's Marketplace provides third-party hard and soft embedded
systems-related IP. The forum also includes an unsupported projects repository of
useful example designs. You are welcome to contribute to these forum pages.

Traditional support is available from the Support Center or through your local Field
Application Engineer (FAE). You can obtain more informal support by visiting the Nios
Forum section of the Altera Forum or by browsing the information contained on the
Altera Wiki. Many experienced developers, from Intel and elsewhere, contribute
regularly to Wiki content and answer questions on the Nios Forum.

Related Links

• Embedded Processing Page

• www.alteraforum.com

• www.alterawiki.com
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2.4 Intel Embedded Glossary

The following definitions explain some of the unique terminology for describing Qsys
and Nios II processor-based systems:

• Component—A named module in Qsys that contains the hardware and software
necessary to access a corresponding hardware peripheral.

• Custom instruction—Custom hardware processing integrated with the Nios II
processor's ALU. The programmable nature of the Nios II processor and Qsys-
based design supports this implementation of software algorithms in custom
hardware. Custom instructions accelerate common operations. (The Nios II
processor floating-point instructions are implemented as custom instructions).

• Custom peripheral—An accelerator implemented in hardware. Unlike custom
instructions, custom peripherals are not connected to the CPU's ALU. They are
accessed through the system interconnect fabric. (See System interconnect
fabric). Custom peripherals offload data transfer operations from the processor in
data streaming applications.

• ELF (Executable and Linking Format)—The executable format used by the Nios
II processor. This format is arguably the most common of the available executable
formats. It is used in most of today's popular Linux/BSD operating systems.

• HAL (Hardware Abstraction Layer)—A lightweight runtime environment that
provides a simple device driver interface for programs to communicate with the
underlying hardware. It provides a POSIX-like software layer and wrapper to the
newlib C library.

• Nios II Command Shell—The command shell you use to access Nios II and Qsys
command-line utilities.

— On Windows platforms, a Nios II Command Shell is a Cygwin bash with the
environment properly configured to access command-line utilities.

— On Linux platforms, to run a properly configured bash, type <Nios II EDS
install path>/nios2_command_shell.sh

• Nios II Embedded Development Suite (EDS)—The complete software
environment required to build and debug software applications for the Nios II
processor.

• Nios II Software Build Tools (SBT)—Software that allows you to create Nios II
software projects, with detailed control over the software build process.

• Nios II Software Build Tools for Eclipse—An Eclipse-based development
environment for Nios II embedded designs, using the SBT for project creation and
detailed control over the software build process. The SBT for Eclipse provides
software project management, build, and debugging capabilities.

• Qsys—Software that provides a GUI-based system builder and related build tools
for the creation of FPGA-based subsystems, with or without a processor.

• System interconnect fabric—An interface through which the Nios II processor
communicates to on- and off-chip peripherals. This fabric provides many
convenience and performance-enhancing features.
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2.5 Document Revision History

Table 2. First Time Designer's Guide Chapter Revision History

Date Version Changes

December 2016 2016.12.19 Updates:
• First Time Designer's Guide section updated
• Nios II Software Design section moved to Software System Design with

a Nios II Processor chapter

December 2015 2015.12.18 Updates:
• Removed mention of SOPC Builder, now Qsys
• Removed mention of C2H Complier
• Quartus II now Quartus Prime
• Removed mention of FS2 Console
• Removed mention of Nios II IDE
Sections removed:
• Nios II IDE Flow

July 2011 2.3 • Clarified this handbook does not include information about Qsys.
• Updated location of hardware design examples.
• Updated references.

March 2010 2.2 Updated for the SBT for Eclipse.

January 2009 2.1 Updated Nios Wiki hyperlink.

Novemeber 2008 2.0 Added System Console.

March 2008 1.0 Initial release.
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3 Hardware System Design with Quartus Prime and Qsys
This chapter provides information on the hardware system design flow, designing with
Qsys, and interfacing an external processor to an FPGA. Also included are useful
configurations available with a Nios II processor, timing constraints and requirements,
and how to customize the FPGA to your design needs.

The Qsys system integration tool saves significant time and effort in the FPGA design
process by automatically generating interconnect logic to connect intellectual property
(IP) functions and subsystems. The following sections will explain how to connect
signals in Qsys.

3 Hardware System Design with Quartus Prime and Qsys
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3.1 FPGA Hardware Design

Although you develop your FPGA-based design in Qsys, you must perform the
following tasks in other tools:

• Connect signals from your FPGA-based design to your board level design

• Connect signals from your Qsys system to other signals in the FPGA logic

• Constrain your design

Figure 2. Nios II System Hardware Design Flow
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3.1.1 Connecting Your FPGA Design to Your Hardware

To connect your FPGA-based design to your board-level design, perform the following
two tasks:

• Identify the top level of your FPGA design.

• Assign signals in the top level of your FPGA design to pins on your FPGA using any
of the methods mentioned in the Intel I/O Management, Board Development
Support, and Signal Integrity Analysis Resource Center page of the Intel FPGA
website.

Note: The top level of your FPGA-based design might be your Qsys system. However, the
FPGA can include additional design logic.

Related Links

I/O Management, Board Development Support, and Signal Integrity Analysis Resource
Center

3.1.2 Connecting Signals to your Qsys System

You must define the clock and reset pins for your Qsys system. You must also define
each I/O signal that is required for proper system operation. The figure below shows
the top-level block diagram of a Qsys system that includes a Nios II processor. The
large symbol in this top-level diagram, labeled std_1s40, represents the Qsys
system. The flag-shaped pin symbols in this diagram represent off-chip (off-FPGA)
connections.
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Figure 3. Top-level Block Diagram

For more information about connecting your FPGA pins, refer to the Intel I/O
Management, Board Development Support, and Signal Integrity Analysis Resource
Center page of the Intel website.

Related Links

I/O Management, Board Development Support, and Signal Integrity Analysis Resource
Center

3.1.3 Constraining Your FPGA-Based Design

To ensure your design meets timing and other requirements, you must constrain the
design to meet these requirements explicitly using tools provided in the Quartus®

Prime software or by a third party EDA provider. The Quartus Prime software uses
your constraint information during design compilation to achieve Intel’s best possible
results.

Note: Intel’s third-party EDA partners and the tools they provide are listed on Intel's Partner
Solutions page of the Intel website.

Related Links

Intel's Partner Solutions
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3.2 Hardware Design with Qsys

Qsys simplifies the task of building complex hardware systems on an FPGA. Qsys
allows you to describe the topology of your system using a graphical user interface
(GUI) and then generate the hardware description language (HDL) files for that
system. The Quartus Prime software compiles the HDL files to create an SRAM Object
File (.sof). For additional information about Qsys, refer to the Quartus Prime
Handbook.

Qsys allows you to choose the processor core type and the level of cache, debugging,
and custom functionality for each Nios II processor. Your design can use on-chip
resources such as memory, PLLs, DSP functions, and high-speed transceivers. You can
construct the optimal processor for your design using Qsys.

After you construct your system using Qsys, and after you add any required custom
logic to complete your top-level design, you must create pin assignments using the
Quartus Prime software. The FPGA’s external pins have flexible functionality, and a
range of pins is available to connect to clocks, control signals, and I/O signals.

For information about how to create pin assignments, refer to Quartus Prime Help and
to the I/O Management chapter in Volume 2: Design Implementation and Optimization
of the Quartus Prime Handbook.

Intel recommends that you start your design from a small pretested project and build
it incrementally. Start with one of the many Qsys example designs available from the
All Design Examples web page of the Intel website, or with an example design from
the Nios II Hardware Development Tutorial.

Qsys allows you to create your own custom components using the component editor.
In the component editor you can import your own source files, assign signals to
various interfaces, and set various component and parameter properties.

Before designing a custom component, you should become familiar with the interface
and signal types that are available in Qsys.

Native addressing is deprecated. Therefore, you should use dynamic addressing for
slave interfaces on all new components. Dynamically addressable slave ports include
byte enables to qualify which byte lanes are accessed during read and write cycles.
Dynamically addressable slave interfaces have the added benefit of being accessible
by masters of any data width without data truncation or side effects.

To learn about the interface and signal types that you can use in Qsys, refer to Avalon
Interface Specifications. To learn about using the component editor, refer to the
Component Editor chapter in the Quartus Prime Handbook.

As you add each hardware component to the system, test it with software. If you do
not know how to develop software to test new hardware components, Intel
recommends that you work with a software engineer to test the components.

The Nios II EDS includes several software examples, located in your Nios II EDS
installation directory (nios2eds), at <Nios II EDS install dir>\examples
\software. After you run a simple software design—such as the simplest example,
Hello World Small—build individual systems based on this design to test the additional
interfaces or custom options that your system requires. Intel recommends that you
start with a simple system that includes a processor with a JTAG debug module, an
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on-chip memory component, and a JTAG UART component, and create a new system
for each new untested component, rather than adding in new untested components
incrementally.

After you verify that each new hardware component functions correctly in its own
separate system, you can combine the new components incrementally in a single Qsys
system. Qsys supports this design methodology well, by allowing you to add
components and regenerate the project easily.

For detailed information about how to implement the recommended incremental
design process, refer to the Verification and Board Bring-Up chapter of the Embedded
Design Handbook.

Related Links

• Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis

• All Design Examples

• Nios II Hardware Development Tutorial

• Avalon Interface Specifications

• Verification and Board Bring-Up on page 252

3.2.1 Intel System on a Programmable Chip (Qsys) Solutions

To understand the Nios II software development process, you must understand the
definition of a Qsys system. Qsys is a system development tool for creating systems
including processors, peripherals, and memories. The tool enables you to define and
generate a complete Qsys very efficiently. Qsys does not require that your system
contain a Nios II processor, although it provides complete support for integrating Nios
II processors with your system.

An Qsys system is similar in many ways to a conventional embedded system;
however, the two kinds of system are not identical. An in-depth understanding of the
differences increases your efficiency when designing your Qsys system.

In Intel Qsys solutions, the hardware design is implemented in an FPGA device. An
FPGA device is volatile—contents are lost when the power is turned off— and
reprogrammable. When an FPGA is programmed, the logic cells inside it are configured
and connected to create a Qsys system, which can contain Nios II processors,
memories, peripherals, and other structures. The system components are connected
with Avalon® interfaces. After the FPGA is programmed to implement a Nios II
processor, you can download, run, and debug your system software on the system.
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Understanding the following basic characteristics of FPGAs and Nios II processors is
critical for developing your Nios II software application efficiently:

• FPGA devices and Qsys—basic properties:

— Volatility—The FPGA is functional only after it is configured, and it can be
reconfigured at any time.

— Design—Many Intel Qsys systems are designed using Qsys and the Quartus
Prime software, and may include multiple peripherals and processors.

— Configuration—FPGA configuration can be performed through a programming
cable, such as the USB-Blaster™ cable, which is also used for Nios II software
debugging operations.

— Peripherals—Peripherals are created from FPGA resources and can appear
anywhere in the Avalon memory space. Most of these peripherals are
internally parameterizable.

• Nios II processor—basic properties:

— Volatility—The Nios II processor is volatile and is only present after the FPGA
is configured. It must be implemented in the FPGA as a system component,
and, like the other system components, it does not exist in the FPGA unless it
is implemented explicitly.

— Parameterization—Many properties of the Nios II processor are
parameterizable in Qsys, including core type, cache memory support, and
custom instructions, among others.

— Processor Memory—The Nios II processor must boot from and run code
loaded in an internal or external memory device.

— Debug support—To enable software debug support, you must configure the
Nios II processor with a debug core. Debug communication is performed
through a programming cable, such as the USB-Blaster cable.

— Reset vector—The reset vector address can be configured to any memory
location.

— Exception vector—The exception vector address can be configured to any
memory location.

3 Hardware System Design with Quartus Prime and Qsys

Embedded Design Handbook
19



3.2.2 Qsys Design

The recommended design flow requires that you maintain several small Qsys systems,
each with its Quartus Prime project and the software you use to test the new
hardware. A Qsys design requires the following files and folders:

• Quartus Prime Project File (.qpf)

• Quartus Prime Settings File (.qsf)

The .qsf file contains all of the device, pin, timing, and compilation settings for the
Quartus Prime project.

• One of the following types of top-level design file:

— Block Design File (.bdf)

— Verilog Design File (.v)

— VHDL Design File (.vhd)

If Qsys generates your top-level design file, you do not need to preserve a
separate top-level file.

Qsys generates most of the HDL files for your system, so you do not need to
maintain them when preserving a project. You need only preserve the HDL
files that you add to the design directly.

For details about the design file types, refer to the Quartus Prime Help.

• Qsys Design File (.sopc)

• Qsys Information File (.sopcinfo)

This file contains an XML description of your Qsys system. Qsys and downstream
tools, including the Nios II Software Build Tools (SBT), derive information about
your system from this file.

• Your software application source files

To replicate an entire project (both hardware and software), simply copy the required
files to a separate directory. You can create a script to automate the copying process.
After the files are copied, you can proceed to modify the new project in the
appropriate tools: the Quartus Prime software, Qsys, the SBT for Eclipse, the SBT in
the command shell, or the Nios II Integrated Development Environment (IDE).

For more information about all of these files, refer to the "Archiving Projects" chapter
in the Quartus Prime Handbook Volume 1: Design and Synthesis.

Related Links

Archiving Projects
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3.3 Interfacing an External Processor to an Intel FPGA

Intel provides options to connect an external processor to an Intel FPGA. These
interface options include the PCI Express, PCI, RapidIO™, serial peripheral interface
(SPI) interface or a simple custom bridge that you can design yourself.

By including both an FPGA and a commercially available processor in your system, you
can partition your design to optimize performance and cost in the following ways:

• Offload pre- or post- processing of data to the external processor

• Create dedicated FPGA resources for co-processing data

• Reduce design time by using IP from Intel’s library of components to implement
peripheral expansion for industry standard functionality

• Expand the I/O capability of your external processor

You can instantiate the PCI Express, PCI, and RapidIO MegaCore functions using either
the Parameter Editor or Qsys design flow. The PCI Lite and SPI cores are only
available in the Qsys design flow. Qsys automatically generates the HDL design files
that include all of the specified components and system connectivity. Alternatively, you
can use the IP Toolbench with the Parameter Editor to generate a stand-alone
component outside of Qsys. The figure below shows the steps you take to instantiate a
component in both design flows.

Figure 4. Qsys and Parameter Editor Design Flows

Select Design Flow

Specify Parameters

Complete Qsys System

Simulate System

Specify Parameters
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Function in Design
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The remainder of this section provides an overview of the MegaCore functions that you
can use to interface an Intel FPGA to an external processor. It covers the following
topics:

• Configuration Options

• RapidIO Interface

• PCI Express Interface

• PCI Interface

• Serial Protocol Interface (SPI)

• Custom Bridge Interfaces

3.3.1 Configuration Options

The figure below illustrates a Qsys system design that includes a high-performance
external bus or switch to connect an industry-standard processor to an external
interface of a MegaCore function inside the FPGA. This MegaCore function also
includes an Avalon-MM master port that connects to the Qsys system interconnect
fabric. As the figure illustrates, Intel provides a library of components, typically
Avalon-MM slave devices, that connect seamlessly to the Avalon system interconnect
fabric.

Figure 5. FPGA with a Bus or Switch Interface Bridge for Peripheral Expansion

The design below includes an external processor that interfaces to a PCI Express
endpoint inside the FPGA. The system interconnect fabric inside the implements a
partial crossbar switch between the endpoint that connects to the external processor
and two additional PCI Express root ports that interface to an Ethernet card and a
marking engine. In addition, the system includes some custom logic, a memory
controller to interface to external DDR SDRAM memory, a USB interface port, and an
interface to external flash memory. Qsys automatically generates the system
interconnect fabric to connect the components in the system.
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Figure 6. FPGA with a Processor Bus or SPI for Peripheral Expansion

Alternatively, you can also implement your logic in Verilog HDL or VHDL without using
Qsys. Below the figure illustrates a modular design that uses the FPGA for co-
processing with a second module to implement the interface to the processor. If you
choose this option, you must write all of the HDL to connect the modules in your
system.
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Figure 7. FPGA Performs Co-Processing

Processor
Direct
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Intel FPGA

Co-Processing
Implemented In
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The table below summarizes the components Intel provides to connect an Intel FPGA
device to an external processor. As this table indicates, three of the components are
also available for use in the Parameter Editor design flow in addition to Qsys.
Alternative implementations of these components are also available through the Intel
IP Core Partners Program (AMPPSM) partners. The AMPP partners offer a broad
portfolio of IP cores optimized for Intel devices.

For a complete list of third-party IP for Intel FPGAs, refer to the Intellectual Property:
Reference Designs web page of the Intel website. For Qsys components, search for
sopc_builder_ready in the IP MegaStore IP core search function.

Table 3. Processor Interface Solutions Available from an Intel Device

Protocol Available in Qsys Available In
Parameter Editor

Third-Party Solution OpenCore Plus
Evaluation Available

RapidIO Yes Yes Yes Yes

PCI Express Yes Yes Yes Yes

PCI Yes Yes Yes Yes

PCI Lite Yes — — License not required

SPI Yes — —

The table below summarizes the most popular options for peripheral expansion in
Qsys systems that include an industry-standard processor. All of these are available in
Qsys. Some are also available using the Parameter Editor.
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Table 4. Partial list of peripheral interfaces available for Qsys

Protocol Available in Qsys Available In
Parameter Editor

Third-Party Solution OpenCore Plus
Evaluation Available

CAN Yes — Yes Yes

I2C Yes — Yes Yes

Ethernet Yes Yes Yes Yes

PIO Yes — — Not required

POS-PHY Level 4 (SPI
4.2)

— Yes — Yes

SPI Yes — Yes Not required

UART Yes — Yes Yes

USB Yes — Yes Yes

For detailed information about the components available in Qsys refer to the
Embedded Peripherals IP User Guide and the Intellectual Property: Find IP page.

In some cases, you must download third-party IP solutions from the AMPP vendor
website, before you can evaluate the peripheral using the OpenCore Plus.

For more information about the AMPP program and OpenCore Plus refer to AN343:
OpenCore Evaluation of AMPP Megafunctions and AN320: OpenCore Plus Evaluation of
Megafunctions.

The following sections discuss the high-performance interfaces that you can use to
interface to an external processor.

Related Links

• Intellectual Property: Reference Designs

• Embedded Peripherals IP User Guide

• OpenCore Evaluation of AMPP Megafunctions

• OpenCore Plus Evaluation of Megafunctions

• Intellectual Property: Find IP

3.3.2 RapidIO Interface

RapidIO is a high-performance packet-switched protocol that transports data and
control information between processors, memories, and peripheral devices. The
RapidIO MegaCore function is available in Qsys includes Avalon-MM ports that
translate Serial RapidIO transactions into Avalon-MM transactions. The MegaCore
function also includes an optional Avalon Streaming (Avalon-ST) interface that you can
use to send transactions directly from the transport layer to the system interconnect
fabric. When you select all optional features, the core includes the following ports:

• Avalon-MM I/O write master

• Avalon-MM I/O read master

• Avalon-MM I/O write slave

• Avalon-MM I/O read slave

• Avalon-MM maintenance master
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• Avalon-MM system maintenance slave

• Avalon Streaming sink pass-through TX

• Avalon-ST source pass-through RX

Using the Qsys design flow, you can integrate a RapidIO endpoint in a Qsys system.
You connect the ports using the Qsys System Contents tab and Qsys automatically
generates the system interconnect fabric. The figure below illustrates a Qsys system
that includes a processor and a RapidIO MegaCore function.

Figure 8. Example system with RapidIO Interface
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Refer to the RapidIO trade association web site's product list at rapidio.org for a list of
processors that support a RapidIO interface.

Refer to the following documents for a complete description of the RapidIO MegaCore
function: RapidIO MegaCore Function User Guide and AN513: RapidIO Interoperability
With TI 6482 DSP Reference Design.

Related Links

• www.rapidio.org

• RapidIO MegaCore Function User Guide

• RapidIO Interoperability with TI 6482 DSP Reference Design

3.3.3 PCI Express Interface

The Intel IP Compiler for PCI Express configured using the Qsys design flow uses the
IP Compiler for PCI Express's Avalon-MM bridge module to connect the IP Compiler for
PCI Express component to the system interconnect fabric. The bridge facilitates the
design of PCI Express systems that use the Avalon-MM interface to access Qsys
components. The figure below illustrates a design that links an external processor to
an Qsys system using the IP Compiler for PCI Express.

You can also implement the IP Compiler for PCI Express using the Parameter Editor
design flow. The configuration options for the two design flows are different. The IP
Compiler for PCI Express is available in Stratix IV and Arria II GX devices as a hard IP
implementation and can be used as a root port or end point. In Stratix V devices, Intel
provides the Stratix V Hard IP for PCI Express.
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Figure 9. Example System with PCI Express Interface

The figure shows an example system in which an external processor communicates
with an Intel FPGA through a PCI Express link.

For more information about using the IP Compiler for PCI Express refer to the
following reference documents:

Related Links

• IP Compiler for PCI Express User Guide

• AN456: PCI Express High Performance Reference Design

3 Hardware System Design with Quartus Prime and Qsys

Embedded Design Handbook
28

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_pci_express.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an456.pdf


• External PHY Support in PCI Express MegaCore Functions

• PCI Express to External Memory Reference Design

3.3.4 PCI Interface

Intel offers a wide range of PCI local bus solutions that you can use to connect a host
processor to an FPGA. You can implement the PCI MegaCore function using the
Parameter Editor or Qsys design flow.

The PCI Qsys flow is an easy way to implement a complete Avalon-MM system which
includes peripherals to expand system functionality without having to be well-
acquainted with the Avalon-MM protocol. The figure below illustrates a Qsys system
using the PCI MegaCore function. You can parameterize the PCI MegaCore function
with a 32- or 64-bit interface.

Figure 10. PCI MegaCore Function in a Qsys System

For more information refer to the PCI Compiler User Guide.

Related Links

PCI Compiler User Guide

3.3.5 Serial Protocol Interface (SPI)

The SPI Slave to Avalon Master Bridge component provides a simple connection
between processors and Qsys systems through a four-wire industry standard serial
interface. Host systems can initiate Avalon-MM transactions by sending encoded
streams of bytes through the core's serial interface. The core supports read and write
transactions to the Qsys system for memory access and peripheral expansion.
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The SPI Slave to Avalon Master Bridge is an Qsys-ready component that integrates
easily into any Qsys system. Processors that include an SPI interface can easily
encapsulate Avalon-MM transactions for reads and writes using the protocols outlined
in the SPI Slave/JTAG to Avalon Master Bridge Cores chapter of the Embedded
Peripherals IP User Guide.

Figure 11. Example System with SPI to Avalon-MM Interface Component

Details of each protocol layer can be found in the following chapters of the Embedded
Peripherals IP User Guide:

SPI Slave/JTAG to Avalon Master Bridge Cores—Provide a connection from an external
host system to an Qsys system. Allow an SPI master to initiate Avalon-MM
transactions.

Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores—Provide a
connection from an external host system to an Qsys system. Allow an SPI master to
initiate Avalon-ST transactions.

Avalon Packets to Transactions Converter Core—Receives streaming data from
upstream components and initiates Avalon-MM transactions. Returns Avalon-MM
transaction responses to requesting components.

The SPI Slave to Avalon Master Bridge Design Example demonstrates SPI transactions
between an Avalon-MM host system and a remote SPI system.

Related Links

• Embedded Peripherals IP User Guide

• SPI Slave to Avalon Master Bridge Design Example
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3.3.6 Custom Bridge Interfaces

Many bus protocols can be mapped to the system interconnect fabric either directly or
with some custom bridge interface logic to compensate for differences between the
interface standards. The Avalon-MM interface standard, which Qsys supports, is a
synchronous, memory-mapped interface that is easy to create custom bridges for.

If required, you can use the component editor available in Qsys to quickly define a
custom bridge component to adapt the external processor bus to the Avalon-MM
interface or any other standard interface that is defined in the Avalon Interfaces
Specifications. The Templates menu available in the component editor includes menu
items to add any of the standard Avalon interfaces to your custom bridge. You can
then use the Interfaces tab of the component editor to modify timing parameters
including: Setup, Read Wait, Write Wait, and Hold timing parameters, if required.

For more information about the component editor, refer to the Creating Qsys
Components chapter of the Quartus Prime Handbook Volume 1: Design and Synthesis.

The Avalon-MM protocol requires that all masters provide byte addresses.
Consequently, it may be necessary for your custom bridge component to add address
wires when translating from the external processor bus interface to the Avalon-MM
interface. For example, if your processor bus has a 16-bit word address, you must add
one additional low-order address bit. If processor bus drives 32-bit word addresses,
you must add two additional, low-order address bits. In both cases, the extra bits
should be tied to 0. The external processor accesses individual byte lanes using the
byte enable signals.

Consider the following points when designing a custom bridge to interface between an
external processor and the Avalon-MM interface:

• The processor bus signals must comply or be adapted with logic to comply with
the signals used for transactions, as described in the Avalon Interfaces
Specifications.

• The external processor must support the Avalon waitrequest signal that inserts
wait-state cycles for slave components

• The system bus must have a bus reference clock to drive Qsys interface logic in
the FPGA.

• No time-out mechanism is available if you are using the Avalon-MM interface.

• You must analyze the timing requirements of the system. You should perform a
timing analysis to guarantee that all synchronous timing requirements for the
external processor and Avalon-MM interface are met. Examine the following timing
characteristics:

— Data tSU, tH , and tCO times to the bus reference clock

— fMAX of the system matches the performance of the bus reference clock

— Turn-around time for a read-to-write transfer or a write-to-read transfer for
the processor is well understood

If your processor has dedicated read and write buses, you can map them to the
Avalon-MM readdata and writedata signals. If your processor uses a bidirectional data
bus, the bridge component can implement the tristate logic controlled by the
processor’s output enable signal to merge the readdata and writedata signals into a
bidirectional data bus at the pins of the FPGA. Most of the other processor signals can
pass through the bridge component if they adhere to the Avalon-MM protocol. The
figure below illustrates the use of a bridge component with a 32-bit external processor.
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Figure 12. Custom Bridge to Adapt an External Processor to an Avalon-MM Slave
Interface

For more information about designing with the Avalon-MM interface refer to the Avalon
Interfaces Specifications.

Related Links

• Avalon Interface Specifications

• Creating Qsys Components
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3.4 Avalon-MM Byte Ordering

This section describes Avalon Memory-Mapped (Avalon-MM) interface bus byte
ordering and provides recommendations for representing data in your system.
Understanding byte ordering in both hardware and software is important when using
intellectual property (IP) cores that interpret data differently.

Intel recommends understanding the following documents before proceeding:

• Qsys Interconnect chapter of the Quartus Prime Handbook Volume 1: Design and
Synthesis

• The Avalon Interface Specifications

Related Links

• Qsys Interconnect

• Avalon Interface Specifications

3.4.1 Endianness

The term endian describes data byte ordering in both hardware and software. The two
most common forms of data byte ordering are little endian and big endian. Little
endian means that the least significant portion of a value is presented first and stored
at the lowest address in memory. Big endian means the most significant portion of a
value is presented first and stored at the lowest address in memory. For example,
consider the value 0x1234. In little endian format, the 4 is the first digit presented or
stored. In big endian format, the 1 is the first digit presented or stored.

Endianness typically refers only to byte ordering. Bit ordering within each byte is a
separate subject covered in “PowerPC Bus Byte Ordering” and “ARM BE-32 Bus Byte
Ordering”.

Related Links

• PowerPC Bus Byte Ordering on page 41

• ARM BE-32 Bus Byte Ordering on page 43

3.4.1.1 Hardware Endianness

Hardware developers can map the data bits of an interface in any order. There must
be coordination and agreement among developers so that the data bits of an interface
correctly map to address offsets for any master or slave interface connected to the
interconnect. Consistent hardware endianness or bus byte ordering is especially
important in systems that contain IP interfaces of varying data widths because the
interconnect performs the data width conversion between the master and slave
interfaces. The key to simplifying bus byte ordering is to be consistent system-wide
when connecting IP cores to the interconnect. For example, if all but one IP core in
your system use little endian bus byte ordering, modify the interface of the one big
endian IP core to conform to the rest of the system.

The way an IP core presents data to the interconnect is not dependent on the internal
representation of the data within the core. IP cores can map the data interface to
match the bus data byte ordering specification independent of the internal arithmetic
byte ordering.
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3.4.1.2 Software Endianness

Software endianness or arithmetic byte ordering is the internal representation of data
within an IP core, software compiler, and peripheral drivers. Processors can treat byte
offset 0 of a variable as the most or least significant byte of a multibyte word. For
example, the value 0x0A0B0C0D, which spans multiple bytes, can be represented
different ways. A little endian processor considers the byte 0x0D of the value to be
located at the lowest byte offset in memory, whereas a big endian processor considers
the byte 0x0A of the value to be located at the lowest byte offset in memory.

The example below shows a C code fragment that illustrates the difference between
the little endian and big endian arithmetic byte ordering used by most processors.

Example 1. Reading Byte Offset 0 of a 32-Bit Word

long * long_ptr;
char byte_value;
*long_ptr = 0x0A0B0C0D; // 32-bit store to 'long_ptr'
byte_value = *((char *)long_ptr); // 8-bit read from 'long_ptr'

In the example, the processor writes the 32-bit value 0x0A0B0C0D to memory, then
reads the first byte of the value back. A little endian processor such as the Nios II
processor, which considers memory byte offset 0 to be the least significant byte of a
word, stores byte 0x0D to byte offset 0 of pointer location long_ptr. A processor
such as a PowerPC®, which considers memory byte offset 0 to be the most significant
byte of a word, stores byte 0x0A to byte offset 0 of pointer location long_ptr. As a
result, the variable byte_value is loaded with 0x0D if this code executes on a little
endian Nios II processor and 0x0A if this code executes on a big endian PowerPC
processor.

Arithmetic byte ordering is not dependent on the bus byte ordering used by the
processor data master that accesses memory. However, word and halfword accesses
sometimes require byte swapping in software to correctly interpret the data internally
by the processor.

For more information, refer to “Arithmetic Byte Reordering” and “System-Wide
Arithmetic Byte Reordering in Software”.

Related Links

• Arithmetic Byte Reordering on page 45

• System-Wide Arithmetic Byte Reordering in Software on page 48

3.4.2 Avalon-MM Interface Ordering

To ensure correct data communication, the Avalon-MM interface specification requires
that each master or slave port of all components in your system pass data in
descending bit order with data bits 7 down to 0 representing byte offset 0. This bus
byte ordering is a little endian ordering. Any IP core that you add to your system must
comply with the Avalon-MM interface specification. This ordering ensures that when
any master accesses a particular byte of any slave port, the same physical byte lanes
are accessed using a consistent bit ordering. For more information, refer to the Avalon
Interface Specifications.
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The interconnect handles dynamic bus sizing for narrow to wide and wide to narrow
transfers when the master and slave port widths connected together do not match.
When a wide master accesses a narrow slave, the interconnect serializes the data by
presenting the lower bytes to the slave first. When a narrow master accesses a wide
slave, the interconnect performs byte lane realignment to ensure that the master
accesses the appropriate byte lanes of the slave.

For more information, refer to the Qsys Interconnect chapter of the Quartus Prime
Handbook Volume 1: Design and Synthesis

Related Links

• Qsys Interconnect

• Avalon Interface Specifications

3.4.2.1 Dynamic Bus Sizing DMA Examples

A direct memory access (DMA) engine moves memory contents from a source location
to a destination location. Because Qsys supports dynamic bus sizing, the data widths
of the source and destination memory in the examples do not need to match the width
of the DMA engine. The DMA engine reads data from a source base address and
sequentially increases the address until the last read completes. The DMA engine also
writes data to a destination base address and sequentially increases the address until
the last write completes.

The following three figures illustrate example DMA transfers to and from memory of
differing data widths. The source memory is populated with an increasing sequential
pattern starting with the value 0 at base address 0. The DMA engine begins
transferring data starting from the base address of the source memory to the base
address of the destination memory. The interconnect always transfers the lower bytes
first when any width adaptation takes place. The width adaptation occurs
automatically within the interconnect.
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Figure 13. 16-Bit to 32-Bit Memory DMA Transfer
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Figure 14. 32-Bit to 64-Bit Memory DMA Transfer
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Figure 15. 128-Bit to 16-Bit Memory DMA Transfer
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3.4.3 Nios II Processor Data Accesses

In the Nios II processor, the internal arithmetic byte ordering and the bus byte
ordering are both little endian. Internally, the processor and its compiler map the least
significant byte of a value to the lowest byte offset in memory.

For example, the figure below shows storing the 32-bit value 0x0A0B0C0D to the
variable Y. The action maps the least significant byte 0x0D to offset 0 of the memory
used to store the variable.
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Figure 16. Nios II 32-Bit Byte Mapping

The Nios II processor is a 32-bit processor. For data larger than 32 bits, the same
mapping of the least significant byte to lowest offset occurs. For example, if the value
0x0807060504030201 is stored to a 64-bit variable, the least significant byte 0x01 of
the variable is stored to byte offset 0 of the variable in memory. The most significant
byte 0x08 of the variable is stored to byte offset 7 of the variable in memory. The
processor writes the least significant four bytes 0x04030201 of the variable to
memory first, followed by the most significant four bytes 0x08070605.

The master interfaces of the Nios II processor comply with Avalon-MM bus byte
ordering by providing read and write data to the interconnect in descending bit order
with bits 7 down to 0 representing byte offset 0. Because the Nios II processor uses a
32-bit data path, the processor can access the interconnect with seven different
aligned accesses. The table below shows the seven valid write accesses that the Nios
II processor can present to the interconnect.

Table 5. Nios II Write Data Byte Mapping

Access Size
(Bits)

Offset
(Bytes)

Value Byte Enable
(Bits 3:0)

Write Data
(Bits

31:24)

Write Data
(Bits

23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 0001 — — — 0x0A

8 1 0x0A 0010 — — 0x0A —

8 2 0x0A 0100 — 0x0A — —

8 3 0x0A 1000 0x0A — — —

16 0 0x0A0B 0011 — — 0x0A 0x0B

16 2 0x0A0B 1100 0x0A 0x0B — —

32 0 0x0A0B0C0D 1111 0x0A 0x0B 0x0C 0x0D
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The code fragment shown in the example generates all seven of the accesses
described in the table in the order presented in the table, where BASE is a location in
memory aligned to a four-byte boundary.

Example 2. Nios II Write Data Byte Mapping Code

IOWR_8DIRECT(BASE, 0, 0x0A);
IOWR_8DIRECT(BASE, 1, 0x0A);
IOWR_8DIRECT(BASE, 2, 0x0A);
IOWR_8DIRECT(BASE, 3, 0x0A);
IOWR_16DIRECT(BASE, 0, 0x0A0B);
IOWR_16DIRECT(BASE, 2, 0x0A0B);
IOWR_32DIRECT(BASE, 0, 0x0A0B0C0D);

3.4.4 Adapting Processor Masters to be Avalon-MM Compliant

Because the way the Nios II processor presents data to the interconnect is Avalon-MM
compliant, no extra effort is required to connect the processor to the interconnect.
This section describes how to modify non-Avalon-MM compliant processor masters to
achieve Avalon-MM compliance.

Some processors use a different arithmetic byte ordering than the Nios II processor
uses, and as a result, typically use a different bus byte ordering than the Avalon-MM
interface specification supports. When connecting one of these processors directly to
the interconnect in a system containing other masters such as a Nios II processor,
accesses to the same address result in accessing different physical byte lanes of the
slave port. Mixing masters and slaves that conform to different bus byte ordering
becomes nearly impossible to manage at a system level. These mixed bus byte
ordering systems are difficult to maintain and debug. Intel requires that the master
interfaces of any processors you add to your system are Avalon-MM compliant.

Processors that use a big endian arithmetic byte ordering, which is opposite to what
the Nios II processor implements, map the most significant byte of the variable to the
lowest byte offset of the variable in memory. For example, the figure below shows how
a PowerPC processor core stores the 32-bit value 0x0A0B0C0D to the memory
containing the variable Y. The PowerPC stores the most significant byte, 0x0A, to
offset 0 of the memory containing the variable.
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Figure 17. Power PC 32-Bit Byte Mapping

This arithmetic byte ordering is the opposite of the ordering shown in “Nios II
Processor Data Accesses”. Because the arithmetic byte ordering internal to the
processor is independent of data bus byte ordering external to the processor, you can
adapt processor masters with non-Avalon-MM compliant bus byte ordering to present
Avalon-MM compliant data to the interconnect.

The following sections describe the bus byte ordering for the two most common
processors that are not Avalon-MM complaint:

• “PowerPC Bus Byte Ordering”

• “ARM BE-32 Bus Byte Ordering”

Related Links

• Nios II Processor Data Accesses on page 38

• PowerPC Bus Byte Ordering on page 41

• ARM BE-32 Bus Byte Ordering on page 43

3.4.4.1 PowerPC Bus Byte Ordering

The byte positions of the PowerPC bus byte ordering are aligned with the byte
positions of the Avalon-MM interface specification; however, the bits within each byte
are misaligned. PowerPC processor cores use an ascending bit ordering when the
masters are connected to the interconnect. For example, a 32-bit PowerPC core labels
the bus data bits 0 up to 31. A PowerPC core considers bits 0 up to 7 as byte offset 0.
This layout differs from the Avalon-MM interface specification, which defines byte
offset 0 as data bits 7 down to 0. To connect a PowerPC processor to the interconnect,
you must rename the bits in each byte lane as shown below.
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Figure 18. PowerPC Bit-Renaming Wrapper

In the figure above, bit 0 is renamed to bit 7, bit 1 is renamed to bit 6, bit 2 is
renamed to bit 5, and so on. By renaming the bits in each byte lane, byte offset 0
remains in the lower eight data bits. You must rename the bits in each byte lane
separately. Renaming the bits by reversing all 32 bits creates a result that is not
Avalon-MM compliant. For example, byte offset 0 would shift to data bits 31 down to
24, not 7 down to 0 as required.

Note: Because the bits are simply renamed, this additional hardware does not occupy any
additional FPGA resources nor impact the fMAX of the data interface.
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3.4.4.2 ARM BE-32 Bus Byte Ordering

Some ARM cores use a bus byte ordering commonly referred to as big endian 32
(BE-32). BE-32 processor cores use a descending bit ordering when the masters are
connected to the interconnect. For example, an ARM BE-32 processor core labels the
data bits 31 down to 0. Such a processor core considers bits 31 down to 24 as byte
offset 0. This layout differs from the Avalon-MM specification, which defines byte 0 as
data bits 7 down to 0.

A BE-32 processor core accesses memory using the bus mapping shown below.

Table 6. ARM BE-32 Write Data Mapping

Access Size
(Bits)

Offset
(Bytes)

Value Byte Enable
(Bits 3:0)

Write Data
(Bits

31:24)

Write Data
(Bits

23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 1000 0x0A — — —

8 1 0x0A 0100 — 0x0A — —

8 2 0x0A 0010 — — 0x0A —

8 3 0x0A 0001 — — — 0x0A

16 0 0x0A0B 1100 0x0A 0x0B — —

16 2 0x0A0B 0011 — — 0x0A 0x0B

32 0 0x0A0B0C0D 1111 0x0A 0x0B 0x0C 0x0D

The write access behavior of the BE-32 processor shown in the table above differs
greatly from the Nios II processor behavior shown in Table 5 on page 39. The only
consistent access is the full 32-bit write access. In all the other cases, each processor
accesses different byte lanes of the interconnect.

To connect a processor with BE-32 bus byte ordering to the interconnect, rename each
byte lane as the figure below shows.
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Figure 19. ARM BE-32 Byte-Renaming Wrapper

Note: As in the case of the PowerPC wrapper logic, the ARM BE-32 wrapper does not
consume any FPGA logic resources or degrade the fMAX of the interface.

3.4.4.3 ARM BE-8 Bus Byte Ordering

Newer ARM processor cores offer a mode called big endian 8 (BE-8). BE-8 processor
master interfaces are Avalon-MM compliant. Internally, the BE-8 core uses a big
endian arithmetic byte ordering; however, at the bus level, the core maps the data to
the interconnect with the little endian orientation the Avalon-MM interface specification
requires.

Note: This byte reordering sometimes requires special attention. For more information, refer
to “Arithmetic Byte Reordering”.

Related Links

Arithmetic Byte Reordering on page 45

3.4.4.4 Other Processor Bit and Byte Orders

There are numerous other ways to order the data leaving or entering a processor
master interface. For those cases, the approach to achieving Avalon-MM compliance is
the same. In general, apply the following three steps to any processor core to ensure
Avalon-MM compliance:

1. Identify the bit order.

2. Identify the location of byte offset 0 of the master.

3. Create a wrapper around the processor core that renames the data signals so that
byte 0 is located on data 7 down to 0, byte 1 is located on data 15 down to 8, and
so on.
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3.4.4.5 Arithmetic Byte Reordering

Altering your system to conform to Avalon-MM byte ordering modifies the internal
arithmetic byte ordering of multibyte values as seen by the software. For example, an
Avalon-MM compliant big endian processor core such as an ARM BE-8 processor
accesses memory using the bus mapping shown below.

Table 7. ARM BE-8 Write Data Mapping

Access Size
(Bits)

Offset
(Bytes)

Value Byte
Enable

(Bits 3:0)

Write Data
(Bits

31:24)

Write Data
(Bits

23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 0001 — — — 0x0A

8 1 0x0A 0010 — — 0x0A —

8 2 0x0A 0100 — 0x0A — —

8 3 0x0A 1000 0x0A — — —

16 0 0x0A0B 0011 — — 0x0B 0x0A

16 2 0x0A0B 1100 0x0B 0x0A — —

32 0 0x0A0B0C0D 1111 0x0D 0x0C 0x0B 0x0A

The big endian ARM BE-8 mapping in the table ablove matches the little endian Nios II
processor mapping for all single byte accesses. If you ensure that your processor is
Avalon-MM compliant, you can easily share individual bytes of data between big and
little endian processors and peripherals.

However, making sure that the processor data master is Avalon-MM compliant only
ensures that single byte accesses map to the same physical byte lanes of a slave port.
In the case of multibyte accesses, the same byte lanes are accessed between the BE-8
and little endian processor; however, the value is not interpreted consistently. This
mismatch is only important when the internal arithmetic byte ordering of the
processor differs from other peripherals and processors in your system.

To correct the mismatch, you must perform arithmetic byte reordering in software for
multibyte accesses. Interpretation of the data by the processor can vary based on the
arithmetic byte ordering used by the processor and other processors and peripherals
in the system.

For example, consider a 32-bit ARM BE-8 processor core that reads from a 16-bit little
endian timer peripheral by performing a 16-bit read access. The ARM processor treats
byte offset 0 as the most significant byte of any word. The timer treats byte offset 0
as the least significant byte of the 16-bit value. When the processor reads a value
from the timer, the bytes of the value, as seen by software, are swapped. The figure
below shows the swapping. A timer counter value of 0x0800 (2,048 clock ticks) is
interpreted by the processor as 0x0008 (8 clock ticks) because the arithmetic byte
ordering of the processor does not match the arithmetic byte ordering of the timer
component.
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Figure 20. ARM BE-8 Processor Accessing a Little Endian Peripheral
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For the values to be interpreted accurately, the processor must either read each byte
lane individually and then combine the two byte reads into a single 16-bit value in
software, or read the single 16-bit value and swap the bytes in software.

The same issue occurs when you apply a bus-level renaming wrapper to an ARM
BE-32 or PowerPC core. Both processor cores treat byte offset 0 as the most
significant byte of any value. As a result, you must handle any mismatch between
arithmetic byte ordering of data used by the processor and peripherals in your system.

On the other hand, if the timer in the figure above were to treat the most significant
byte of the 16-bit value as byte 0 (big endian ordering), the data would arrive at the
processor master in the same arithmetic byte ordering used by the processor. If the
processor and the component internally implement the same arithmetic byte ordering,
no software swapping of bytes is necessary for multibyte accesses.
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The figure below shows how the value 0x0800 of a big endian timer is read by the
processor. The value is retained without the need to perform any byte swapping in
software after the read completes.

Figure 21. ARM BE-8 Processor Accessing a BE-8 Peripheral
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3.4.5 System-Wide Design Recommendations

In the previous sections, we discussed arithmetic and bus byte ordering from a
processor perspective. The same concepts directly apply to any component in your
system. Any component containing Avalon-MM slave ports must also adhere to the
Avalon-MM specification, which states that the data bits be defined in descending
order with byte offset 0 positioned at bits 7 down to 0. As long as the component’s
slave port is Avalon-MM compliant, you can use any arithmetic byte ordering within
the component.

3.4.5.1 System-Wide Arithmetic Byte Ordering

Typically, the most convenient arithmetic byte ordering to use throughout a system is
the ordering the processor uses, if one is present. If the processor uses a different
arithmetic byte ordering than the rest of the system, you must write software that
rearranges the ordering for all multibyte accesses.

The majority of the IP provided by Intel that contains an Avalon-MM master or slave
port uses little endian arithmetic byte ordering. If your system consists primarily of
components provided by Intel, it is much easier to make the remainder of your system
use the same little endian arithmetic byte ordering. When the entire system uses
components that use the same arithmetic byte ordering and Avalon-MM bus byte
ordering, arithmetic byte reordering within the processor or any component
performing data accesses is not necessary.

Intel recommends writing your driver code to handle both big and little endian
arithmetic byte ordering. For example, if the peripheral is little endian, write the
peripheral driver to execute on both big and little endian processors. For little endian
processors, no byte swapping is necessary. For big endian processors, all multibyte
accesses requires a byte swap. Driver code selection is controlled at compile time or
run time depending on the application and the peripheral.

3.4.5.2 System-Wide Arithmetic Byte Reordering in Software

If you cannot modify your system so that all the components use the same arithmetic
byte ordering, you must implement byte reordering in software for multibyte accesses.
Many processors today include instructions to accelerate this operation. If your
processor does not have dedicated byte-reordering instructions, the example below
shows how you can implement byte reordering in software by leveraging the macros
for 16-bit and 32-bit data.

Example 3. Software Arithmetic Byte Reordering

/* Perform 16-bit byte reordering */
#define SW_16_BIT_ARITHMETIC_REORDERING (data) ( \
(((data) << 8) & 0xFF00) | \
(((data) >> 8) & 0x00FF) \
)

/* Perform 32-bit byte reordering */
#define SW_32_BIT_ARITHMETIC_REORDERING (data) ( \
(((data) << 24) & 0xFF000000) | \
(((data) << 8) & 0x00FF0000) | \
(((data) >> 8) & 0x0000FF00) | \
(((data) >> 24) & 0x000000FF) \
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Choose the appropriate instruction or macro to perform the byte reordering based on
the width of the value that requires arithmetic byte reordering. Because arithmetic
byte ordering only applies to individual values stored in memory or peripherals, you
must reverse the bytes of the value without disturbing the data stored in neighboring
memory locations. For example, if you load a 16-bit value from a peripheral that uses
a different arithmetic byte ordering, you must swap two bytes in software. If you
attempt to load two 16-bit values as a packed 32-bit read access, you must swap the
individual 16-bit values independently. If you attempt to swap all four bytes at once,
the two individual 16-bit values are swapped, which is not the original intent of the
software developer.
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3.5 Memory System Design

This section describes the efficient use of memories in a Qsys embedded systems.
Efficient memory use increases the performance of FPGA-based embedded systems.
Embedded systems use memories for a range of tasks, such as the storage of
software code and lookup tables (LUTs) for hardware accelerators.

3.5.1 Memory Types

Your system’s memory requirements depend heavily on the nature of the applications
which you plan to run on the system. Memory performance and capacity requirements
are small for simple, low cost systems. In contrast, memory throughput can be the
most critical requirement in a complex, high performance system. The following
general types of memories can be used in embedded systems.

3.5.1.1 Volatile Memory

A primary distinction in memory types is volatility. Volatile memories only hold their
contents while power is applied to the memory device. As soon as power is removed,
the memories lose their contents; consequently, volatile memories are unacceptable if
data must be retained when the memory is switched off. Examples of volatile
memories include static RAM (SRAM), synchronous static RAM (SSRAM), synchronous
dynamic RAM (SDRAM), and FPGA on-chip memory.

3.5.1.2 Non-Volatile Memory

Non-volatile memories retain their contents when power is switched off, making them
good choices for storing information that must be retrieved after a system power-
cycle. Processor boot-code, persistent application settings, and FPGA configuration
data are typically stored in non-volatile memory. Although non-volatile memory has
the advantage of retaining its data when power is removed, it is typically much slower
to write to than volatile memory, and often has more complex writing and erasing
procedures. Non-volatile memory is also usually only guaranteed to be erasable a
given number of times, after which it may fail. Examples of non-volatile memories
include all types of flash, EPROM, and EEPROM. Most modern embedded systems use
some type of flash memory for non-volatile storage.

Many embedded applications require both volatile and non-volatile memories because
the two memory types serve unique and exclusive purposes. The following sections
discuss the use of specific types of memory in embedded systems.

3.5.2 On-Chip Memory

On-chip memory is the simplest type of memory for use in an FPGA-based embedded
system. The memory is implemented in the FPGA itself; consequently, no external
connections are necessary on the circuit board. To implement on-chip memory in your
design, simply select On-Chip Memory from the Component Library on the System
Contents tab in Qsys. You can then specify the size, width, and type of on-chip
memory, as well as special on-chip memory features such as dual-port access.
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3.5.2.1 Advantages

On-chip memory is the highest throughput, lowest latency memory possible in an
FPGA-based embedded system. It typically has a latency of only one clock cycle.
Memory transactions can be pipelined, making a throughput of one transaction per
clock cycle typical.

Some variations of on-chip memory can be accessed in dual-port mode, with separate
ports for read and write transactions. Dual-port mode effectively doubles the potential
bandwidth of the memory, allowing the memory to be written over one port, while
simultaneously being read over the second port.

Another advantage of on-chip memory is that it requires no additional board space or
circuit-board wiring because it is implemented on the FPGA directly. Using on-chip
memory can often save development time and cost.

Finally, some variations of on-chip memory can be automatically initialized with
custom content during FPGA configuration. This memory is useful for holding small
bits of boot code or LUT data which needs to be present at reset.

3.5.2.2 Disadvantages

While on-chip memory is very fast, it is somewhat limited in capacity. The amount of
on-chip memory available on an FPGA depends solely on the particular FPGA device
being used, but capacities range from around 15 KBytes in the smallest Cyclone II
device to just under 2 MBytes in the largest Stratix III device.

Because most on-chip memory is volatile, it loses its contents when power is
disconnected. However, some types of on-chip memory can be initialized automatically
when the FPGA is configured, essentially providing a kind of non-volatile function. For
details, refer to the embedded memory chapter of the device handbook for the
particular FPGA family you are using or Quartus® II Help.

3.5.2.3 Best Applications

The following sections describe the best uses of on-chip memory.

3.5.2.3.1 Cache

Because it is low latency, on-chip memory functions very well as cache memory for
microprocessors. The Nios II processor uses on-chip memory for its instruction and
data caches. The limited capacity of on-chip memory is usually not an issue for caches
because they are typically relatively small.

3.5.2.3.2 Tightly Coupled Memory

The low latency access of on-chip memory also makes it suitable for tightly coupled
memories. Tightly coupled memories are memories which are mapped in the normal
address space, but have a dedicated interface to the microprocessor, and possess the
high speed, low latency properties of cache memory.

For more information regarding tightly-coupled memories, refer to the Using Tightly
Coupled Memory with the Nios II Processor Tutorial.

Related Links

Using Tightly Coupled Memory with the Nios II Processor Tutorial
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3.5.2.3.3 Look Up Tables

For some software programming functions, particularly mathematical functions, it is
sometimes fastest to use a LUT to store all the possible outcomes of a function, rather
than computing the function in software. On-chip memories work well for this purpose
as long as the number of possible outcomes fits reasonably in the capacity of on-chip
memory available.

3.5.2.3.4 FIFO

Embedded systems often need to regulate the flow of data from one system block to
another. FIFOs can buffer data between processing blocks that run most efficiently at
different speeds. Depending on the size of the FIFO your application requires, on-chip
memory can serve as very fast and convenient FIFO storage.

For more information regarding FIFO buffers, refer to the On-Chip FIFO Memory Core
chapter of the Embedded Peripheral IP User Guide.

Related Links

On-Chip FIFO Memory Core

3.5.2.4 Poor Applications

On-chip memory is poorly suited for applications which require large memory capacity.
Because on-chip memory is relatively limited in capacity, avoid using it to store large
amounts of data; however, some tasks can take better advantage of on-chip memory
than others. If your application utilizes multiple small blocks of data, and not all of
them fit in on-chip memory, you should carefully consider which blocks to implement
in on-chip memory. If high system performance is your goal, place the data which is
accessed most often in on-chip memory cache.

3.5.2.5 On-Chip Memory Types

Depending on the type of FPGA you are using, several types of on-chip memory are
available. For details on the different types of on-chip memory available to you, refer
to the device handbook for the particular FPGA family you are using.

3.5.2.6 Best Practices

To optimize the use of the on-chip memory in your system, follow these guidelines:

• Set the on-chip memory data width to match the data-width of its primary system
master. For example, if you are connecting the on-chip memory to the data
master of a Nios II processor, you should set the data width of the on-chip
memory to 32 bits, the same as the data-width of the Nios II data master.
Otherwise, the access latency could be longer than one cycle because the system
interconnect fabric performs width translation.

• If more than one master connects to an on-chip memory component, consider
enabling the dual-port feature of the on-chip memory. The dual-port feature
removes the need for arbitration logic when two masters access the same on-chip
memory. In addition, dual-ported memory allows concurrent access from both
ports, which can dramatically increase efficiency and performance when the
memory is accessed by two or more masters. However, writing to both slave ports
of the RAM can result in data corruption if there is not careful coordination
between the masters.
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To minimize FPGA logic and memory utilization, follow these guidelines:

• Choose the best type of on-chip memory for your application. Some types are
larger capacity; others support wider data-widths. The embedded memory section
in the device handbook for the appropriate FPGA family provides details on the
features of on-chip memories.

• Choose on-chip memory sizes that are a power of 2 bytes. Implementing
memories with sizes that are not powers of 2 can result in inefficient memory and
logic use.

3.5.3 External SRAM

The term external SRAM refers to any static RAM (SRAM) device that you connect
externally to a FPGA. There are several varieties of external SRAM devices. The choice
of external SRAM and its type depends on the nature of the application. Designing
with SRAM memories presents both advantages and disadvantages.

3.5.3.1 Advantages

External SRAM devices provide larger storage capacities than on-chip memories, and
are still quite fast, although not as fast as on-chip memories. Typical external SRAM
devices have capacities ranging from around 128 KBytes to 10 MBytes. Specialty
SRAM devices can even be found in smaller and larger capacities. SRAMs are typically
very low latency and high throughput devices, slower than on-chip memory only
because they connect to the FPGA over a shared, bidirectional bus. The SRAM
interface is very simple, making connecting to an SRAM from an FPGA a simple design
task. You can also share external SRAM buses with other external SRAM devices, or
even with external memories of other types, such as flash or SDRAM.

3.5.3.2 Disadvantages

The primary disadvantages of external SRAM in an FPGA-based embedded system are
cost and board real estate. SRAM devices are more expensive per MByte than other
high-capacity memory types such as SDRAM. They also consume more board space
per MByte than both SDRAM and FPGA on-chip memory, which consumes none.

3.5.3.3 Best Applications

External SRAM is quite effective as a fast buffer for medium-size blocks of data. You
can use external SRAM to buffer data that does not fit in on-chip memory and requires
lower latency than SDRAM provides. You can also group multiple SRAM memories to
increase capacity.

SRAM is also optimal for accessing random data. Many SRAM devices can access data
at non-sequential addresses with the same low latency as sequential addresses, an
area where SDRAM performance suffers. SRAM is the ideal memory type for a large
LUT holding the data for a color conversion algorithm that is too large to fit in on-chip
memory, for example.

External SRAM performs relatively well when used as execution memory for a
processor with no cache. The low latency properties of external SRAM help improve
processor performance if the processor has no cache to mask the higher latency of
other types of memory.
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3.5.3.4 Poor Applications

Poor uses for external SRAM include systems which require large amounts of storage
and systems which are cost-sensitive. If your system requires a block of memory
larger than 10 MBytes, you may want to consider a different type of memory, such as
SDRAM, which is less expensive.

3.5.3.5 External SRAM Types

There are several types of SRAM devices. The following types are the most popular:

• Asynchronous SRAM—This is the slowest type of SRAM because it is not dependent
on a clock.

• Synchronous SRAM (SSRAM)—Synchronous SRAM operates synchronously to a
clock. It is faster than asynchronous SRAM but also more expensive.

• Pseudo-SRAM—Pseudo-SRAM (PSRAM) is a type of dynamic RAM (DRAM) which
has an SSRAM interface.

• ZBT SRAM—ZBT (zero bus turnaround) SRAM can switch from read to write
transactions with zero turnaround cycles, making it very low latency. ZBT SRAM
typically requires a special controller to take advantage of its low latency features.

3.5.3.6 Best Practices

To get the best performance from your external SRAM devices, follow these
guidelines:

• Use SRAM interfaces which are the same data width as the data width of the
primary system master that accesses the memory.

• If pin utilization or board real estate is a larger concern than the performance of
your system, you can use SRAM devices with a smaller data width than the
masters that will access them to reduce the pin count of your FPGA and possibly
the number of memory devices on the PCB. However, this change results in
reduced performance of the SRAM interface.

3.5.4 Flash Memory

Flash memory is a non-volatile memory type used frequently in embedded systems. In
FPGA-based embedded systems, flash memory is always external because FPGAs do
not contain flash memory. Because flash memory retains its contents after power is
removed, it is commonly used to hold microprocessor boot code as well as any data
which needs to be preserved in the case of a power failure. Flash memories are
available with either a parallel or a serial interface. The fundamental storage
technology for parallel and serial flash devices is the same.

Unlike SRAM, flash memory cannot be updated with a simple write transaction. Every
write to a flash device uses a write command consisting of a fixed sequence of
consecutive read and write transactions. Before flash memory can be written, it must
be erased. All flash devices are divided into some number of erase blocks, or sectors,
which vary in size, depending on the flash vendor and device size. Entire sections of
flash must be erased as a unit; individual words cannot be erased. These
requirements sometimes make flash devices difficult to use.
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3.5.4.1 Advantages

The primary advantage of flash memory is that is non-volatile. Modern embedded
systems use flash memory extensively to store not only boot code and settings, but
large blocks of data such as audio or video streams. Many embedded systems use
flash memory as a low power, high reliability substitute for a hard drive.

Among other non-volatile types of memory, flash memory is the most popular for the
following four reasons:

• It is durable.

• It is erasable.

• It permits a large number of erase cycles.

• It is low-cost.

You can share flash buses with other flash devices, or even with external memories of
other types, such as external SRAM or SDRAM.

3.5.4.2 Disadvantages

A major disadvantage of flash is its write speed. Because you can only write to flash
devices using special commands, multiple bus transactions are required for each flash
write. Furthermore, the actual write time, after the write command is sent, can be
several microseconds. Depending on clock speed, the actual write time can be in the
hundreds of clock cycles. Because of the sector-erase restriction, if you need to
change a data word in the flash, you must complete the following steps:

1. Copy the entire contents of the sector into a temporary buffer.

2. Erase the sector.

3. Change the single data word in the temporary buffer.

4. Write the temporary buffer back to the flash memory device.

This procedure contributes to the poor write speed of flash memory devices. Because
of its poor write speed, flash memory is typically used only for storing data which
must be preserved after power is turned off.

3.5.4.3 Typical Applications

Flash memory is effective for storing any data that you wish to preserve if power is
removed from the system. Common uses of flash memory include storage of the
following types of data:

• Microprocessor boot code

• Microprocessor application code to be copied to RAM at system startup

• Persistent system settings, including the following types of settings:

— Network MAC address

— Calibration data

— User preferences

• FPGA configuration images

• Media (audio, video)
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3.5.4.4 Poor Applications

Because of flash memory's slow write speeds, you should not use it for anything that
does not need to be preserved after power-off. SRAM is a much better alternative if
volatile memory is an option. Systems that use flash memory usually also include
some SRAM as well.

One particularly poor use of flash is direct execution of microprocessor application
code. If any of the code's writeable sections are located in flash memory, the software
simply will not work, because flash memory cannot be written without using its special
write commands. Systems that store application code in flash memory usually copy
the application to SRAM before executing it.

3.5.4.5 Flash Types

There are several types of flash devices. The following types are the most popular:

• Serial flash – This flash has a serial interface to preserve device pins and board
space. Because many serial flash devices have their own specific interface
protocol, it is best to thoroughly read a serial flash device's datasheet before
choosing it. Intel EPCS configuration devices are a type of serial flash.

For more information about EPCS configuration devices, refer to the
Documentation: Configuration Devices page on the Intel website.

• NAND flash – NAND flash can achieve very high capacities, up to multiple GBytes
per device. The interface to NAND flash is a bit more complicated than that of CFI
flash. It requires either a special controller or intelligent low-level driver software.
You can use NAND Flash with Intel FPGAs; however, Intel does not provide any
built-in support.

Related Links

• Documentation: Configuration Devices

• Nios II Flash Programmer User Guide

3.5.5 SDRAM

SDRAM is another type of volatile memory. It is similar to SRAM, except that it is
dynamic and must be refreshed periodically to maintain its content. The dynamic
memory cells in SDRAM are much smaller than the static memory cells used in SRAM.
This difference in size translates into very high-capacity and low-cost memory devices.

In addition to the refresh requirement, SDRAM has other very specific interface
requirements which typically necessitate the use of special controller hardware. Unlike
SRAM, which has a static set of address lines, SDRAM divides up its memory space
into banks, rows, and columns. Switching between banks and rows incurs some
overhead, so that efficient use of SDRAM involves the careful ordering of accesses.
SDRAM also multiplexes the row and column addresses over the same address lines,
which reduces the pin count necessary to implement a given size of SDRAM. Higher
speed varieties of SDRAM such as DDR, DDR2, and DDR3 also have strict signal
integrity requirements which need to be carefully considered during the design of the
PCB.

SDRAM devices are among the least expensive and largest-capacity types of RAM
devices available, making them one of the most popular. Most modern embedded
systems use SDRAM. A major part of an SDRAM interface is the SDRAM controller. The
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SDRAM controller manages all the address-multiplexing, refresh and row and bank
switching tasks, allowing the rest of the system to access SDRAM without knowledge
of its internal architecture.

For information about the SDRAM controllers available for use in Intel FPGAs, refer to
the External Memory Interface Handbook.

Related Links

External Memory Interface Handbook Volume 2: Design Guidelines

3.5.5.1 Advantages

SDRAM's most significant advantages are its capacity and cost. No other type of RAM
combines the low cost and large capacity of SDRAM, which makes it a very popular
choice. SDRAM also makes efficient use of pins. Because row and column addresses
are multiplexed over the same address pins, fewer pins are required to implement a
given capacity of memory. Finally, SDRAM generally consumes less power than an
equivalent SRAM device.

In some cases, you can also share SDRAM buses between multiple SDRAM devices, or
even with external memories of other types, such as external SRAM or flash memory.

3.5.5.2 Disadvantages

Along with the high capacity and low cost of SDRAM, come additional complexity and
latency. The complexity of the SDRAM interface requires that you always use an
SDRAM controller to manage SDRAM refresh cycles, address multiplexing, and
interface timing. Such a controller consumes FPGA logic elements that would normally
be available for other logic.

SDRAM suffers from a significant amount of access latency. Most SDRAM controllers
take measures to minimize the amount of latency, but SDRAM latency is always
greater than that of regular external SRAM or FPGA on-chip memory. However, while
first-access latency is high, SDRAM throughput can actually be quite high after the
initial access latency is overcome, because consecutive accesses can be pipelined.
Some types of SDRAM can achieve higher clock frequencies than SRAM, further
improving throughput. The SDRAM interface specification also employs a burst feature
to help improve overall throughput.

3.5.5.3 Best Applications

SDRAM is generally a good choice in the following circumstances:

• Storing large blocks of data—SDRAM's large capacity makes it the best choice for
buffering large blocks of data such as network packets, video frame buffers, and
audio data.

• Executing microprocessor code—SDRAM is commonly used to store instructions
and data for microprocessor software, particularly when the program being
executed is large. Instruction and data caches improve performance for large
programs. Depending on the system topography and the SDRAM controller used,
the sequential read patterns typical of cache line fills can potentially take
advantage of SDRAM's pipeline and burst capabilities.
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3.5.5.4 Poor Applications

SDRAM may not be the best choice in the following situations:

• Whenever low-latency memory access is required—Although high throughput is
possible using SDRAM, its first-access latency is quite high. If low latency access
to a particular block of data is a requirement of your application, SDRAM is
probably not a good candidate to store that block of data.

• Small blocks of data—When only a small amount of storage is needed, SDRAM
may be unnecessary. An on-chip memory may be able to meet your memory
requirements without adding another memory device to the PCB.

• Small, simple embedded systems—If your system uses a small FPGA in which logic
resources are scarce and your application does not require the capacity that
SDRAM provides, you may prefer to use a small external SRAM or on-chip memory
rather than devoting FPGA logic elements to an SDRAM controller.

3.5.5.5 SDRAM Types

There are a several types of SDRAM devices. The following types are the most
common:

• SDR SDRAM—Single data rate (SDR) SDRAM is the original type of SDRAM. It is
referred to as SDRAM or as SDR SDRAM to distinguish it from newer, double data
rate (DDR) types. The name single data rate refers to the fact that a maximum of
one word of data can be transferred per clock cycle. SDR SDRAM is still in wide
use, although newer types of DDR SDRAM are becoming more common.

• DDR SDRAM—Double data rate (DDR) SDRAM is a newer type of SDRAM that
supports higher data throughput by transferring a data word on both the rising
and falling edge of the clock. DDR SDRAM uses 2.5 V SSTL signaling. The use of
DDR SDRAM requires a custom memory controller.

• DDR2 SDRAM—DDR2 SDRAM is a newer variation of standard DDR SDRAM
memory which builds on the success of DDR by implementing slightly improved
interface requirements such as lower power 1.8 V SSTL signaling and on-chip
signal termination.

• DDR3 SDRAM—DDR3 is another variant of DDR SDRAM which improves the
potential bandwidth of the memory further by improving signal integrity and
increasing clock frequencies.

• QDR, QDR II, and QDR II+ SRAM—Quad Data Rate (QDR) SRAM has independent
read and write ports that run concurrently at double data rate. QDR SRAM is true
dual-port (although the address bus is still shared), which gives this memory a
high bandwidth, allowing back-to-back transactions without the contention issues
that can occur when using a single bidirectional data bus. Write and read
operations share address ports.
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• RLDRAM II and RLDRAM 3—Reduced latency DRAM (RLDRAM) provides DRAM-
based point-to-point memory devices designed for communications, imaging,
server systems, networking, and cache applications requiring high density, high
memory bandwidth, and low latency. The fast random access speeds in RLDRAM
devices make them a viable alternative to SRAM devices at a lower cost.

• LPDDR2—LPDDR2-S is a high-speed SDRAM device internally configured as a 4- or
8-bank memory. All LPDDR2 devices use double data rate architecture on the
address and command bus to reduce the number of input pins in the system. The
10-bit address and command bus contains command, address, and bank/row
buffer information. Each command uses one clock cycle, during which command
information is transferred on both the positive and negative edges of the clock.

• LPDDR3—LPDDR3-SDRAM is a high-speed synchronous DRAM device internally
configured as an 8-bank memory. All LPDDR3 devices use double data rate
architecture on the address and command bus to reduce the number of input pins
in the system. The 10-bit address and command bus contains command, address,
and bank buffer information. Each command uses one clock cycle, during which
command information is transferred on both the positive and negative edges of
the clock.

For more information about SDRAM types refer to the External Memory Interface
Handbook Volume 2: Design Guidelines.
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3.5.5.6 SDRAM Controller Types Available From Intel

The table below lists the SDRAM controllers that Intel provides. These SDRAM
controllers are available without licenses.

Table 8. Memory Controller Available from Intel

Controller Name Description

SDR SDRAM Controller This controller is the only SDR SDRAM controller Intel
offers. It is a simple, easy-to-use controller that works with
most available SDR SDRAM devices.

DDR/DDR2 Controller Megacore Function This controller is a legacy component which is maintained
for existing designs only. Intel does not recommend it for
new designs.

High Performance DDR/DDR2 Controller This controller is the DDR/DDR2 controller that Intel
recommends for new designs. It supports two primary
clocking modes, full-rate and half-rate.
• Full-rate mode presents data to the Qsys system at

twice the width of the actual DDR SDRAM device at the
full SDRAM clock rate.

• Half-rate mode presents data to the Qsys system at four
times the native SDRAM device data width at half the
SDRAM clock rate.

High Performance DDR3 Controller This controller is the DDR3 controller that Intel recommends
for new designs. It is similar to the high performance DDR/
DDR2 controller. It also supports full- and half-rate clocking
modes.

Hard Memory Controller (HMC) The hard memory controller initializes, refreshes, manages,
and communicates with the external memory device. The
HMC supports all the popular and emerging memory
standards including DDR4, DDR3, and LPDDR3.

For more information about the available SDRAM controllers, refer to the External
Memory Interface Handbook Volume 3: Reference Material.

Related Links

External Memory Interface Handbook Volume 3: Reference Material

3.5.5.7 Best Practices

When using the high performance DDR or DDR2 SDRAM controller, it is important to
determine whether full-rate or half-rate clock mode is optimal for your application.

3.5.5.7.1 Half-Rate Mode

Half-rate mode is optimal in cases where you require the highest possible SDRAM
clock frequency, or when the complexity of your system logic means that you are not
able to achieve the clock frequency you need for the DDR SDRAM. In half-rate mode,
the internal Avalon interface to the SDRAM controller runs at half the external SDRAM
frequency.

In half-rate mode, the local data width (the data width inside the Qsys system) of the
SDRAM controller is four times the data width of the physical DDR SDRAM device. For
example, if your SDRAM device is 8 bits wide, the internal Avalon data port of the
SDRAM controller is 32 bits. This design choice facilitates bursts of four accesses to
the SDRAM device.
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3.5.5.7.2 Full-Rate Mode

In full-rate mode, the internal Avalon interface to the SDRAM controller runs at the full
external DDR SDRAM clock frequency. Use full-rate mode if your system logic is simple
enough that it can easily achieve DDR SDRAM clock frequencies, or when running the
system logic at half the clock rate of the SDRAM interface is too slow for your
requirements.

When using full-rate mode, the local data width of the SDRAM controller is twice the
data width of the physical DDR SDRAM. For example, if your SDRAM device is 16 bits
wide, the internal Avalon data port of the SDRAM controller in full-rate mode is 32 bits
wide. Again, this choice facilitate bursts to the SDRAM device.

3.5.5.7.3 Sequential Access

SDRAM performance benefits from sequential accesses. When access is sequential,
data is written or read from consecutive addresses and it may be possible to increase
throughput by using bursting. In addition, the SDRAM controller can optimize the
accesses to reduce row and bank switching. Each row or bank change incurs a delay,
so that reducing switching increases throughput.

3.5.5.7.4 Bursting

SDRAM devices employ bursting to improve throughput. Bursts group a number of
transactions to sequential addresses, allowing data to be transferred back-to-back
without incurring the overhead of requests for individual transactions. If you are using
the high performance DDR/DDR2 SDRAM controller, you may be able to take
advantage of bursting in the system interconnect fabric as well. Bursting is only useful
if both the master and slave involved in the transaction are burst-enabled. Refer to the
documentation for the master in question to check whether bursting is supported.

Selecting the burst size for the high performance DDR/DDR2 SDRAM controller
depends on the mode in which you use the controller. In half-rate mode, the Avalon-
MM data port is four times the width of the actual SDRAM device; consequently, four
transactions are initiated to the SDRAM device for each single transfer in the system
interconnect fabric. A burst size of four is used for those four transactions to SDRAM.
This is the maximum size burst supported by the high performance DDR/DDR2 SDRAM
controller. Consequently, using bursts for the high performance DDR/DDR2 SDRAM
controller in half-rate mode does not increase performance because the system
interconnect fabric is already using its maximum supported burst-size to carry out
each single transaction.

However, in full-rate mode, you can use a burst size of two with the high performance
DDR/DDR2 SDRAM controller. In full-rate mode, each Avalon transaction results in two
SDRAM device transactions, so two Avalon transactions can be combined in a burst
before the maximum supported SDRAM controller burst size of four is reached.

3.5.5.7.5 SDRAM Minimum Frequency

Many SDRAM devices, particularly DDR, DDR2, and DDR3 devices have minimum clock
frequency requirements. The minimum clock rate depends on the particular SDRAM
device. Refer to the datasheet of the SDRAM device you are using to find the device's
minimum clock frequency.
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3.5.5.7.6 SDRAM Device Speed

SDRAM devices, both SDR and DDR, come in several speed grades. When using
SDRAM with FPGAs, the operating frequency of the FPGA system is usually lower than
the maximum capability of the SDRAM device. Therefore, it is typically not worth the
extra cost to use fast speed-grade SDRAM devices. Before committing to a specific
SDRAM device, consider both the expected SDRAM frequency of your system, and the
maximum and minimum operating frequency of the particular SDRAM device.

3.5.6 Case Study

This section describes the optimization of memory partitioning in a video processing
application to illustrate the concepts discussed earlier.

3.5.6.1 Application Description

This video processing application employs an algorithm that operates on a full frame
of video data, line by line. Other details of the algorithm do not impact design of the
memory subsystem. The data flow includes the following steps:

1. A dedicated DMA engine copies the input data from the video source to a buffer.

2. A Nios II processor operates on that buffer, performing the video processing
algorithm and writing the result to another buffer.

3. A second dedicated DMA engine copies the output from the processor result buffer
to the video output device.

4. The two DMAs provide an element of concurrency by copying input data to the
next input buffer, and copying output data from the previous output buffer at the
same time the processor is processing the current buffer, a technique commonly
called ping-ponging.

Figure 22. Sample Application Architecture
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3.5.6.2 Initial Memory Partitioning

As a starting point, the application uses SDRAM for all of its storage and buffering, a
commonly used memory architecture. The input DMA copies data from the video
source to an input buffer in SDRAM. The Nios II processor reads from the SDRAM
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input buffer, processes the data, and writes the result to an output buffer, also located
in SDRAM. In addition, the processor uses SDRAM for both its instruction and data
memory, as shown below.

Figure 23. All Memory Implemented in SDRAM
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Functionally, there is nothing wrong with this implementation. It is a frequently used,
traditional type of embedded system architecture. It is also relatively inexpensive,
because it uses only one external memory device; however, it is somewhat inefficient,
particularly regarding its use of SDRAM. As the figure above illustrates, six different
channels of data are accessed in the SDRAM.

• Processor instruction channel

• Processor data channel

• Input data from DMA

• Input data to processor

• Output data from processor

• Output data to DMA

With this many channels moving in and out of SDRAM simultaneously, especially at
the high data rates required by video applications, the SDRAM bandwidth is easily the
most significant performance bottleneck in the design.

3.5.6.3 Optimized Memory Partitioning

This design can be optimized to operate more efficiently. These optimizations are
described in the following sections.
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3.5.6.3.1 Add an External SRAM for Input Buffers

The first optimization to improve efficiency is to move the input buffering from the
SDRAM to an external SRAM device. This technique creates performance gains for the
following three reasons:

• The input side of the application achieves higher throughput because it now uses
its own dedicated external SRAM to bring in video data.

• Two of the high-bandwidth channels from the SDRAM are eliminated, allowing the
remaining SDRAM channels to achieve higher throughput.

• Eliminating two channels reduces the number of accesses to the SDRAM memory,
leading to fewer SDRAM row changes, leading to higher throughput.

The redesigned system processes data faster, at the expense of more complexity and
higher cost. The figure below illustrates the redesigned system.

If the video frames are small enough to fit in FPGA on-chip memory, you can use on-
chip memory for the input buffers, saving the expense and complexity of adding an
external SRAM device.

Figure 24. Input Channel Moved to External SSRAM

Input
DMA

Nios II
Processor

Output
DMA

Buffer

Buffer

Buffer

Buffer

ping pong

ping pong

Input
Device

Output
Device

Instr Mem

Data Mem

SRAM

Instr
Cache

Data
Cache

SDRAM

Note that four channels remain connected to SDRAM:

1. Processor instruction channel

2. Processor data channel

3. Output data from processor

4. Output data to DMA

While we could probably achieve some additional performance benefit by adding a
second external SRAM for the output channel, the benefit is not likely to be significant
enough to outweigh the added cost and complexity. The reason is that only two of the
four remaining channels require significant bandwidth from the SDRAM, the two video
output channels. Assuming our Nios II processor contains both instruction and data
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caches, the SDRAM bandwidth required by the processor is likely to be relatively
small. Therefore, sharing the SDRAM for processor instructions, processor data, and
the video output channel is probably acceptable. If necessary, increasing the processor
cache sizes can further reduce the processor's reliance on SDRAM bandwidth.

3.5.6.3.2 Add On-Chip Memory for Video Line Buffers

The final optimization is to add small on-chip memory buffers for input and output
video lines. Because the processing algorithm operates on the video input one line at a
time, buffering entire lines of input data in an on-chip memory improves performance.
This buffering enables the Nios II processor to read all its input data from on-chip RAM
—the fastest, lowest latency type of memory available.

The DMA fills these buffers ahead of the Nios II processor in a ping-pong scheme, in a
manner analogous to the input frame buffers used for the external SRAM. The same
on-chip memory line buffering scheme is used for processor output. The Nios II
processor writes its output data to an on-chip memory line buffer, which is copied to
the output frame buffer by a DMA after both the input and output ping-pong buffers
flip, and the processor begins processing the next line. The figure below illustrates this
memory architecture.

Figure 25. On-Chip Memories Added As Line Buffers
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3.6 Nios II Gen2 Hardware Development Tutorial

This tutorial describes the system development flow for the Intel Nios II processor.

Using the Quartus Prime software and the Nios II Embedded Design Suite (EDS), you
can:

• build a Nios II hardware system design

• create a software program that runs on the Nios II system and interfaces with
components on Intel development boards

Building embedded systems in FPGAs involves system requirements analysis,
hardware design tasks, and software design tasks. This tutorial guides you through
the basics of each topic, with special focus on the hardware design steps.

3.6.1 Software and Hardware Requirements

The following are the software requirements for the tutorial:

• Intel Quartus Prime software version 14.0 or later—The software must be installed
on a Windows or Linux computer that meets the Quartus Prime minimum
requirements.

• Nios II EDS version 14.0 or later.

• Design files for the design example—Refer related information below for the
design example file.

You can build the design example with any Intel development board or your own
custom board that meets the following hardware requirements:

• The board must have either Intel MAX 10, Stratix series, Cyclone series, or Arria
series FPGA.

• The FPGA must contain a minimum of 2800 logic elements (LE) or adaptive lookup
tables (ALUT).

• The FPGA must contain a minimum of 40 M9K memory blocks.

• An oscillator must drive a constant clock frequency to an FPGA pin. The maximum
frequency limit depends on the speed grade of the FPGA. Frequencies of 50 MHz
or less should work for most boards; higher frequencies might work.

• FPGA I/O pins can optionally connect to eight or fewer LEDs to provide a visual
indicator of processor activity.

• The board must have a JTAG connection to the FPGA that provides a programming
interface and communication link to the Nios II system. The JTAG connection can
be a dedicated 10-pin JTAG header for an Intel FPGA USB Download Cable or a
USB connection with USB-Blaster circuitry embedded on the board.

Note: Refer to the documentation for your board that describes clock frequencies and
pinouts. For Intel development boards, refer to the related information below.

Related Links

• The Intel FPGA Software Installation and Licensing manual

• All Development Kits
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3.6.2 OpenCore Plus Evaluation

You can perform this tutorial on hardware without a license. With Intel's free
OpenCore Plus evaluation feature, you can perform the following actions:

• Simulate the behavior of a Nios II processor within your system

• Verify the functionality of your design

• Evaluate the size and speed of your design quickly and easily

• Generate time-limited device programming files for designs that include Nios II
processors

• Program a device and verify your design in hardware

You need to purchase a license for the Nios II processor only when you are completely
satisfied with its functionality and performance, and want to use your design in
production.

Related Links

OpenCore Plus Evaluation of and Megafunctions

3.6.3 Nios II Design Example

The design example you build in this tutorial demonstrates a small Nios II system for
control applications, that displays character I/O output and blinks LEDs in a binary
counting pattern. This Nios II system can also communicate with a host computer,
allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following components:

• Nios II/f processor core

• On-chip memory

• Timer

• JTAG UART

• 8-bit parallel I/O (PIO) pins to control the LEDs

• System identification component
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Figure 26. Nios II Design Example Block Diagram
The block diagram shows the relationship between the host computer, the target
board, the FPGA, and the Nios II system.
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Other logic can exist within the FPGA alongside the Nios II system. In fact, most FPGA
designs with a Nios II system also include other logic. A Nios II system can interact
with other on-chip logic, depending on the needs of the overall system. This design
example does not include other logic in the FPGA.
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3.6.4 Nios II System Development Flow

Figure 27. Nios II System Development Flow
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The Nios II development flow consists of three types of development:

• hardware design steps

• software design steps

• system design steps, involving both hardware and software

The design steps in this tutorial focus on hardware development, and provide only a
simple introduction to software development.

3.6.4.1 Analyzing System Requirements

The development flow begins with predesign activity which includes an analysis of the
application requirements, such as the following questions:

• What computational performance does the application require?

• How much bandwidth or throughput does the application require?

• What types of interfaces does the application require?

• Does the application require multithreaded software?
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Based on the answers to these questions, you can determine the concrete system
requirements, such as:

• Which Nios II processor core to use: smaller or faster.

• What components the design requires and how many of each kind.

• Which real-time operating system (RTOS) to use, if any.

• Where hardware acceleration logic can dramatically improve system performance.
For example:

— Could adding a DMA component eliminate wasted processor cycles copying
data?

— Could a custom instruction replace the critical loop of a DSP algorithm?

Analyzing these topics involve both the hardware and software point of view.

3.6.4.2 Defining and Generating the System in Qsys

After analyzing the system hardware requirements, you use Qsys to specify the Nios II
processor core(s), memory, and other components your system requires. Qsys
automatically generates the interconnect logic to integrate the components in the
hardware system.

You can select from a list of standard processor cores and components provided with
the Nios II EDS. You can also add your own custom hardware to accelerate system
performance. You can add custom instruction logic to the Nios II core which
accelerates CPU performance, or you can add a custom component which offloads
tasks from the CPU. This tutorial covers adding standard processor and component
cores, and does not cover adding custom logic to the system.

The primary outputs of Qsys are the following file types:

Table 9. Qsys Primary Output File Types

File Types Description

Qsys Design File (.qsys) Contains the hardware contents of the Qsys system

SOPC Information File (.sopcinfo) Contains a description of the contents of the .qsys file in Extensible Markup
Language File (.xml) format. The Nios II EDS uses the .sopcinfo file to create
software for the target hardware.

Hardware description language (HDL)
files

Are the hardware design files that describe the Qsys system. The Quartus Prime
software uses the HDL files to compile the overall FPGA design into an SRAM
Object File (.sof).

Related Links

Intel Quartus Prime Handbook
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3.6.4.3 Integrating the Qsys System into the Quartus Prime Project

After generating the Nios II system using Qsys, you integrate it into the Quartus Prime
project. Using the Quartus Prime software, you perform all tasks required to create
the final FPGA hardware design.

Using the Quartus Prime software, you can:

• assign pin locations for I/O signals

• specify timing requirements

• apply other design constraints

• compile the Quartus Prime project to produce a .sof to configure the FPGA

You download the .sof to the FPGA on the target board using an Intel download
cable, such as the Intel FPGA USB Download Cable. After configuration, the FPGA
behaves as specified by the hardware design, which in this case is a Nios II processor
system.

3.6.4.4 Developing Software with the Nios II Software Build Tools for Eclipse

You can perform all software development tasks for your Nios II processor system
using the Nios II Software Build Tools (SBT) for Eclipse™.

After you generate the system with Qsys, you can begin designing your C/C++
application code immediately with the Nios II SBT for Eclipse. Intel provides
component drivers and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware details. In
addition to your application code, you can design and reuse custom libraries in your
Nios II SBT for Eclipse projects.

To create a new Nios II C/C++ application project, the Nios II SBT for Eclipse uses
information from the .sopcinfo file. You also need the .sof file to configure the
FPGA before running and debugging the application project on target hardware.

The Nios II SBT for Eclipse can produce several outputs, listed below. Not all projects
require all of these outputs.

Table 10. Nios II SBT for Eclipse Outputs
The Nios II SBT for Eclipse can produce several outputs but not all projects require all of these outputs.

Output Description

system.h file • Defines symbols for referencing the hardware in the system.
• The Nios II SBT for Eclipse automatically create this file when you create a

new board support package (BSP).

Executable and Linking Format File
(.elf)

Is the result of compiling a C/C++ application project, that you can download
directly to the Nios II processor.

Hexadecimal (Intel-Format) File
(.hex)

• Contains initialization information for on-chip memories.
• The Nios II SBT for Eclipse generate these initialization files for on-chip

memories that support initialization of contents.

Flash memory programming data • Boot code and other arbitrary data you might write to flash memory.
• The flash programmer adds appropriate boot code to allow your program to

boot from flash memory.
• The Nios II SBT for Eclipse includes a flash programmer to allow you to write

your program or arbitrary data to flash memory.
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This tutorial focuses on downloading only the .elf directly to the Nios II system.

3.6.4.5 Running and Debugging Software on the Target Board

The Nios II SBT for Eclipse has the capability to download software to a target board,
and run or debug the program on hardware. The Nios II SBT for Eclipse debugger
allows you to start and stop the processor, step through code, set breakpoints, and
analyze variables as the program executes.

3.6.4.6 Varying the Development Flow

The development flow is not strictly linear. The following lost the common variations:

• Refining the Software and Hardware

• Iteratively Creating a Nios II System

• Verifying the System with Hardware Simulation Tools

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II system
requires higher performance. In this case, you can:

• return to software design steps to make improvements to the software algorithm;
or

• return to hardware design steps to add acceleration logic

If the system performs multiple mutually exclusive tasks, you might even decide to
use two (or more) Nios II processors that divide the workload and improve the
performance of each individual processor.

Iteratively Creating a Nios II System

A common technique for building a complex Nios II system is to start with a simpler
Qsys system, and iteratively add to it. At each iteration, you can verify that the
system performs as expected. You might choose to verify the fundamental
components of a system, such as the processor, memory, and communication
channels, before adding more complex components. When developing a custom
component or a custom instruction, first integrate the custom logic into a minimal
system to verify that it works as expected; then integrate the custom logic into a
more complex system.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system,
using tools such as the ModelSim® RTL simulator. Hardware simulation is useful to
meet certain needs, including the following cases:

• To verify the cycle-accurate performance of a Nios II system before target
hardware is available.

• To verify the functionality of a custom component or a Nios II custom instruction
before trying it on hardware.

If you are building a Nios II system based on the standard components provided with
the Nios II EDS, the easiest way to verify functionality is to download the hardware
and software directly to a development board.
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3.6.5 Creating the Design Example

First, you must install the Quartus Prime software and the Nios II EDS. You must also
download tutorial design files from the Intel web site. The design files provide a ready-
made Quartus Prime project to use as a starting point.

3.6.5.1 Install the Design Files

Perform the following steps to set up the design environment:

1. Locate the zipped design files on the Intel web site.

2. Unzip the contents of the zip file to a directory on your computer. Do not use
spaces in the directory path name.

The remainder of this tutorial refers to this directory as the <design files
directory>.

3.6.5.2 Analyze System Requirements

The system requirements are derived from the following goals of the tutorial design
example:

• Demonstrate a simple Nios II processor system that you can use for control
applications.

• Build a practical, real-world system, while providing an educational experience.

• Demonstrate the most common and effective techniques to build practical, custom
Nios II systems.

• Build a Nios II system that works on any board with an Intel FPGA. The entire
system must use only on-chip resources, and not rely on the target board.

• The design should conserve on-chip logic and memory resources so it can fit in a
wide range of target FPGAs.

These goals lead to the following design decisions:

• The Nios II system uses only the following inputs and outputs:

— One clock input, which can be any constant frequency.

— Eight optional outputs to control LEDs on the target board.

• The design uses the following components:

— Nios II/f core with 2 KB of instruction cache with static branch prediction

— 20 KB of on-chip memory

— Timer

— JTAG UART

— Eight output-only parallel I/O (PIO) pins

— System ID component

Related Links

Embedded Peripherals IP User Guide
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3.6.5.3 Start the Quartus Prime Software and Open the Example Project

The Quartus Prime project serves as an easy starting point for the Nios II
development flow. The Quartus Prime project contains all settings and design files
required to create the .sof. To open the Quartus Prime project, perform the following
steps:

1. Start the Quartus Prime software.

2. Click Open Existing Project on the splash screen, or, on the File menu, click
Open Project.
The Open Project dialog box appears.

3. Browse to the <design files directory>.

4. Select the file nios2_quartus2_project.qpf and click Open.

5. To display the Block Diagram File (.bdf) nios2_quartus2_project.bdf,
perform the following steps:

a. On the File menu, click Open.
The Open dialog box appears.

b. Browse to the <design files directory>.

c. Select nios2_quartus2_project.bdf and click Open.

The .bdf contains an input pin for the clock input and eight output pins to drive
LEDs on the board.

Next, you create a new Qsys system, which you ultimately connect to these pins.

3.6.5.4 Create a New Qsys System

You use Qsys to generate the Nios II processor system, adding the desired
components, and configuring how they connect together. To create a new Qsys
system, click Qsys on the Tools menu in the Quartus Prime software. Qsys starts and
displays the System Contents tab.

3.6.5.5 Define the System in Qsys

You use Qsys to define the hardware characteristics of the Nios II system, such as
which Nios II core to use, and what components to include in the system. Qsys does
not define software behavior, such as where in memory to store instructions or where
to send the stderr character stream.

The Qsys design process does not need to be linear. The design steps in this tutorial
are presented in the most straightforward order for a new user to understand.
However, you can perform Qsys design steps in a different order.

3.6.5.5.1 Specify Target FPGA and Clock Settings

To specify target FPGA and clock settings, perform the following steps:

1. On the Project Settings tab, select the Device Family that matches the Intel
FPGA you are targeting.
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If a warning appears stating the selected device family does not match the
Quartus project settings, ignore the warning. You specify the device in the Quartus
project settings later in this tutorial.

2. In the documentation for your board, look up the clock frequency of the oscillator
that drives the FPGA.

3. On the Clock Settings tab, double-click the clock frequency in the MHz column
for clk_0. clk_0 is the default clock input name for the Qsys system. The
frequency you specify for clk_0 must match the oscillator that drives the FPGA.

4. Type the clock frequency and press Enter.

Next, you begin to add hardware components to the Qsys system. As you add each
component, you configure it appropriately to match the design specifications.

Related Links

All Development Kits

3.6.5.5.2 Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This design
example uses one 20 KB on-chip memory for both data and instructions. To add the
memory, perform the following steps:

1. On the IP Catalog tab (to the left of the System Contents tab), expand Basic
Functions, expand On-Chip Memory, and then click On-Chip Memory (RAM
or ROM).

2. Click Add.
The On-Chip Memory (RAM or ROM) parameter editor appears.

3. In the Block type list, select Auto.

4. In the Total memory size box, type 20480 to specify a memory size of 20 KB.

Do not change any of the other default settings.

5. Click Finish. You return to Qsys.

6. Click the System Contents tab.
An instance of the on-chip memory appears in the system contents table.

7. In the Name column of the system contents table, right-click the on-chip memory
and click Rename.

8. Type onchip_mem and press Enter.

You must type these tutorial component names exactly as specified. Otherwise,
the tutorial programs written for this Nios II system fail in later steps. In general,
it is a good habit to give descriptive names to hardware components. Nios II
programs use these symbolic names to access the component hardware.
Therefore, your choice of component names can make Nios II programs easier to
read and understand.
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3.6.5.5.3 Add the Nios II Processor Core

You will add the Nios II/f core and configure it to use 2 KB of on-chip instruction cache
memory, no data cache and use static branch prediction. For this tutorial, the Nios II/f
core is configured to provide a balanced trade-off between performance and resource
utilization. To add a Nios II/f core to the system, perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, and then click
Nios II Gen2 Processor.

2. Click Add.
The Nios II Processor parameter editor appears, displaying the Core Nios II tab.

3. In the Main Tab under Select an Implementation, select Nios II/f.

4. Click Finish and return to the Qsys System Contents tab.
The Nios II core instance appears in the system contents table. Ignore the
exception and reset vector error messages. You resolve these errors in future
steps.

5. In the Name column, right-click the Nios II processor and click Rename.

6. Type cpu and press Enter.

7. In the Connections column, connect the clk port of the clk_0 clock source to
both the clk1 port of the on-chip memory and the clk port of the Nios II
processor by clicking the hollow dots on the connection line. The dots become
solid indicating the ports are connected.

8. Connect the clk_reset port of the clk_0 clock source to both the reset1 port
of the on-chip memory and the reset_n port of the Nios II processor.

9. Connect the s1 port of the on-chip memory to both the data_master port and
instruction_master port of the Nios II processor.

10. Double-click the Nios II processor row of the system contents table to reopen the
Nios II Processor parameter editor.

11. Under Reset Vector in Vectors tab, select onchip_mem.s1 in the Reset vector
memory list and type 0x0 in the Reset vector offset box.

12. Under Exception Vector, select onchip_mem.s1 in the Exception vector
memory list and type 0x20 in the Exception vector offset box.

13. Click the Caches and Memory Interfaces tab.

14. In the Instruction cache list, select 2 Kbytes.

15. Choose None for Data Cache size and do not change other default settings.

16. In Advanced Features tab, select Static branch prediction type.

17. Click Finish. You will return to the Qsys System Contents tab.

Do not change any settings on the MMU and MPU Settings and JTAG Debug
tabs.
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3.6.5.5.4 Add the JTAG UART

The JTAG UART provides a convenient way to communicate character data with the
Nios II processor through the USB-Blaster download cable. To add the JTAG UART,
perform the following steps:

1. On the IP Catalog tab, expand Interface Protocols, expand Serial, and then
click JTAG UART.

2. Click Add.
The JTAG UART parameter editor appears and do not change the default settings.

3. Click Finish and return to the Qsys System Contents tab.
The JTAG UART instance appears in the system contents table.

4. In the Name column, right-click the JTAG UART and click Rename.

5. Type jtag_uart and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the JTAG
UART.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
JTAG UART.

8. Connect the data_master port of the Nios II processor to the
avalan_jtag_slave port of the JTAG UART.

The instruction_master port of the Nios II processor does not connect to the
JTAG UART because the JTAG UART is not a memory device and cannot send
instructions to the Nios II processor.

Related Links

Embedded Peripherals IP User Guide

3.6.5.5.5 Add the Interval Timer

Most control systems use a timer component to enable precise calculation of time. To
provide a periodic system clock tick, the Nios II HAL requires a timer. To add the timer,
perform the following steps:

1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click Interval Timer.

2. Click Add.
The Interval Timer parameter editor appears.

3. Click Finish return to the Qsys System Contents tab.
The interval timer instance appears in the system contents table.

4. In the Name column, right-click the interval timer and click Rename.

5. Type sys_clk_timer and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the interval
timer.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
interval timer.

8. Connect the data_master port of the Nios II processor to the s1 port of the
interval timer.
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Related Links

Embedded Peripherals IP User Guide

3.6.5.5.6 Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software
compiled for a different Nios II system. If the system includes the system ID
peripheral, the Nios II SBT for Eclipse can prevent you from downloading programs
compiled for a different system. To add system ID peripheral, perform the following
steps:

1. On the IP Catalog tab, expand Basic Functions, expand Simulations; Debug
and Verifications and then click System ID Peripheral.

2. Click Add.
The System ID Peripheral parameter editor appears and do not change the
default setting.

3. Click Finish and return to the Qsys System Contents tab.
The system ID peripheral instance appears in the system contents table.

4. In the Name column, right-click the system ID peripheral and click Rename.

5. Type sysid and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the system ID
peripheral.

7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
system ID peripheral.

8. Connect the data_master port of the Nios II processor to the control_slave
port of the system ID peripheral.

Related Links

Embedded Peripherals IP User Guide

3.6.5.5.7 Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input
stimuli and drive output signals. Complex control applications might use hundreds of
PIO signals which the Nios II processor can monitor. This design example uses eight
PIO signals to drive LEDs on the board. To add the PIO, perform the following steps:

Note: Perform these steps even if your target board doesn't have LEDs.

1. On the IP Catalog tab, expand Processors and Peripherals, expand
Peripherals, and then click PIO .

2. Click Add.
The PIO (Parallel I/O) parameter editor appears and do not change the default
settings.

3. Click Finish and return to the Qsys System Contents tab.
The PIO instance appears in the system contents table.

4. In the Name column, right-click the PIO and click Rename.

5. Type led_pio and press Enter.

6. Connect the clk port of the clk_0 clock source to the clk port of the PIO.
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7. Connect the clk_reset port of the clk_0 clock source to the reset port of the
PIO.

8. Connect the data_master port of the Nios II processor to the s1 port of the
PIO.

9. In the external_connection row, click Click to export in the Export column to
export the PIO ports.

Related Links

Embedded Peripherals IP User Guide

3.6.5.5.8 Specify Base Addresses and Interrupt Request Priorities

To specify how the components added in the design to interact to form a system, you
need assign base addresses for each slave component, and assign interrupt request
(IRQ) priorities for the JTAG UART and the interval timer.

Qsys provides the Assign Base Addresses command which makes assigning
component base addresses easy. For many systems, including this design example,
Assign Base Addresses is adequate. However, you can adjust the base addresses to
suit your needs. Below are some guidelines for assigning base addresses:

• Nios II processor cores can address a 31-bit address span. You must assign base
address between 0x00000000 and 0x7FFFFFFF.

Note: The Use most-significant address bit in processor to bypass data
cache option is enable by default. If disabled, the Nios II processor cores
supports full 32-bit address.

• Nios II programs use symbolic constants to refer to addresses. You do not have to
choose address values that are easy to remember.

• Address values that differentiate components with only a one-bit address
difference produce more efficient hardware. You do not have to compact all base
addresses into the smallest possible address range, because this can create less
efficient hardware.

• Qsys does not attempt to align separate memory components in a contiguous
memory range. For example, if you want an on-chip RAM and an off-chip RAM to
be addressable as one contiguous memory range, you must explicitly assign base
addresses.

Qsys also provides an Assign Interrupt Numbers command which connects IRQ
signals to produce valid hardware results. However, assigning IRQs effectively requires
an understanding of how software responds to them. Because Qsys does not know the
software behavior, Qsys cannot make educated guesses about the best IRQ
assignment.
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The Nios II HAL interprets low IRQ values as higher priority. The timer component
must have the highest IRQ priority to maintain the accuracy of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Assign Base Addresses to make Qsys assign
functional base addresses to each component in the system. Values in the Base
and End columns might change, reflecting the addresses that Qsys reassigned.

2. In the IRQ column, connect the Nios II processor to the JTAG UART and interval
timer.

3. Click the IRQ value for the jtag_uart component to select it.

4. Type 16 and press Enter to assign a new IRQ value.

5. Click the IRQ value for the sys_clk_timer component to select it.

6. Type 1 and press Enter to assign a new IRQ value.

3.6.5.5.9 Generate the Qsys System

To generate the Qsys system, perform the following steps:

1. Click the Generation tab.

2. Select None in both the Create simulation model and Create testbench Qsys
system lists.

Because this tutorial does not cover the hardware simulation flow, you can select
these settings to shorten generation time.

3. Click Generate. Click Yes when the Save changes? dialog box appears.

4. Type first_nios2_system in the File name box and click Save.
The Generate dialog box appears and system generation process begins. The
generation process can take several minutes. When generation completes, Qsys
will prompt: Create HDL design files for synthesis.

5. Click Close to close the dialog box.

6. On the File menu, click Exit to close Qsys and return to the Quartus Prime
software.

You are ready to integrate the system into the Quartus Prime hardware project and
use the Nios II SBT for Eclipse to develop software.

3.6.5.6 Integrate the Qsys System into the Quartus Prime Project

To complete the hardware design, you need to perform the following tasks:

• Instantiate the Qsys system module in the Quartus Prime project.

• Assign FPGA device and pin locations.

• Compile the Quartus Prime project.

• Verify timing.

3.6.5.6.1 Instantiate the Qsys System Module in the Quartus Prime Project

Qsys outputs a design entity called the system module. The tutorial design example
uses the block diagram method of design entry, so you instantiate a system module
symbol first_nios2_system into the .bdf.
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Note: How you instantiate the system module depends on the design entry method of the
overall Quartus Prime project. For example, if you were using Verilog HDL for design
entry, you would instantiate the Verilog module first_nios2_system defined in the
file first_nios2_system.v.

To instantiate the system module in the .bdf, perform the following steps:

1. Double-click in the empty space to the right of the input and output wires.
The Symbol dialog box appears.

2. Under Libraries, expand Project.

3. Click first_nios2_system.
The Symbol dialog box displays the first_nios2_system symbol.

4. Click OK. You return to the .bdf schematic. The first_nios2_system symbol
tracks with your mouse pointer.

5. Position the symbol so the pins on the symbol align with the wires on the
schematic.

6. Click to anchor the symbol in place.

7. If your target board does not have LEDs that the Nios II system can drive, you
must delete the LEDG[7..0] pins. To delete the pins, perform the following steps:

a. Click the output symbol LEDG[7..0] to select it.

b. On your keyboard, press Delete.

8. To save the completed .bdf, click Save on the File menu.

3.6.5.6.2 Add IP Variation File

You can add the Quartus Prime IP File (.qip) to the your Quartus Prime project by
performing the following steps:

1. On the Assignments menu, click Settings.
The Settings dialog box appears.

2. Under Category, click Files.
The Files page appears.

3. Next to File name, click the browse (...) button.

4. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

5. Browse to locate <design files directory>/first_nios2_system/
synthesis/ first_nios2_system.qip and click Open to select the file.

6. Click Add to include first_nios2_system.qip in the project.

7. Click OK to close the Settings dialog box.

3.6.5.6.3 Assign FPGA Device

Before assigning FPGA pin locations to match the pinouts of your board, you need to
first assign a specific target device. To assign the device, perform the following steps:

1. On the Assignments menu, click Device.
The Device dialog box appears.

2. In the Family list, select the FPGA family that matches your board.
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If prompted to remove location assignments, do so.

3. Under Target device, select Specific device selected in Available devices
list.

4. Under Available devices, select the exact device that matches your board.

If prompted to remove location assignments, do so.

5. Click OK to accept the device assignment.

3.6.5.6.4 Assign FPGA Pin Locations

Before assigning the FPGA pins, you must know the pin layout for the board. You also
must know other requirements for using the board, refer to related information below.
To assign the FPGA pin locations, perform the following steps:

1. On the Processing menu, point to Start, and click Start Analysis & Elaboration
to prepare for assigning pin locations.
The analysis starts by displaying a data not available message and can take
several minutes. A confirmation message box appears when analysis and
elaboration completes.

2. Click OK.

3. On the Assignments menu, click Pin Planner.
The Quartus Prime Pin Planner appears.

4. In the Node Name column, locate PLD_CLOCKINPUT.

5. In the PLD_CLOCKINPUT row, double-click in the Location cell to access a list
of available pin locations.

6. Select the appropriate FPGA pin that connects to the oscillator on the board.

If your design fails to work, recheck your board documentation for this step first.

7. In the PLD_CLOCKINPUT row, double-click in the I/O Standard cell to access a
list of available I/O standards.

8. Select the appropriate I/O standard that connects to the oscillator on the board.

9. If you connected the LED pins in the board design schematic, repeat steps 4 to 8
for each of the LED output pins (LEDG[0], LEDG[1], LEDG[2], LEDG[3],
LEDG[4], LEDG[5], LEDG[6], LEDG[7]) to assign appropriate pin locations.

10. On the File menu, click Close to save the assignments.

11. On the Assignments menu, click Device.
The Device dialog box appears.

12. Click Device and Pin Options.
The Device and Pin Options dialog box appears.

13. Click the Unused Pins page.

14. In the Reserve all unused pins list, select As input tri-stated with weak pull-
up. With this setting, all unused I/O pins on the FPGA enter a high-impedance
state after power-up.

3 Hardware System Design with Quartus Prime and Qsys

Embedded Design Handbook
82



Unused pins are set as input tri-stated with weak pull-up to remove contention
which might damage the board. Depending on the board, you might have to make
more assignments for the project to function correctly. You can damage the board
if you fail to account for the board design. Consult with the maker of the board for
specific contention information.

15. Click OK to close the Device and Pin Options dialog box.

16. Click OK to close the Device dialog box.

3.6.5.6.5 Set Timing

To ensure the design meets timing, perform the following steps:

1. On the File menu, click Open.

2. In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

3. Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open. The file opens in the text editor.

4. Locate the following create_clock command:create_clock -name
sopc_clk -period 20 [get_ports PLD_CLOCKINPUT]

5. Change the period setting from 20 to the clock period (1/frequency) in
nanoseconds of the oscillator driving the clock pin.

6. On the File menu, click Save.

7. On the Assignments menu, click Settings.
The Settings dialog box appears.

8. Under Category, click TimeQuest Timing Analyzer.

9. Next to File name, click the browse (...) button.

10. Browse to locate <design files directory>/hw_dev_tutorial.sdc and
click Open to select the file.

11. Click Add to include hw_dev_tutorial.sdc in the project.

12. Turn on Enable multicorner timing analysis during compilation.

13. Click OK.

3.6.5.6.6 Compile the Quartus Prime Project and Verify Timing

To create a .sof file, you have to compile the hardware design and then it download
to the board. After the compilation completes, you must analyze the timing
performance of the FPGA design to verify that the design will work in hardware. To
compile the Quartus Prime project, perform the following steps:

1. On the Processing menu, click Start Compilation.
The Tasks window and percentage and time counters in the lower-right corner
display progress. The compilation process can take several minutes. When
compilation completes, a dialog box displays the message "Full Compilation was
successful."

2. Click OK. The Quartus Prime software displays the Compilation Report tab.

3. Expand the TimeQuest Timing Analyzer category in the compilation report.

4. Click Multicorner Timing Analysis Summary.

5. Verify that the Worst-case Slack values are positive numbers for Setup, Hold,
Recovery, and Removal.
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If any of these values are negative, the design might not operate properly in
hardware. To meet timing, adjust Quartus Prime assignments to optimize fitting,
or reduce the oscillator frequency driving the FPGA.

3.6.5.7 Download the Hardware Design to the Target FPGA

To download the .sof to the target board, perform the following steps:

1. Connect the board to the host computer with the download cable, and apply power
to the board.

2. On the Tools menu in the Quartus Prime software, click Programmer.
The Quartus Prime Programmer appears and automatically displays the
appropriate configuration file (nios2_quartus2_project.sof).

3. Click Hardware Setup in the upper left corner of the Quartus Prime Programmer
to verify your download cable settings.
The Hardware Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected hardware list.

If the appropriate download cable does not appear in the list, you must first install
drivers for the cable.

5. Click Close.

6. In the nios2_quartus2_project.sof row, turn on Program/Configure.

7. Click Start.
The Progress meter sweeps to 100% as the Quartus Prime software configures the
FPGA.

At this point, the Nios II system is configured and running in the FPGA, but it does not
yet have a program in memory to execute.

3.6.5.8 Develop Software Using the Nios II SBT for Eclipse

Developing software using the Nios II SBT for Eclipse consists the following tasks:

• Create new Nios II C/C++ application and BSP projects.

• Compile the projects.

To perform these steps, you must have the .sopcinfo file you created earlier in this
tutorial. Refer to related information for more information.

Note: This tutorial presents only the most basic software development steps to demonstrate
software running on the hardware system you created in previous sections.

Related Links

Define the System in Qsys on page 74
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3.6.5.8.1 Create a New Nios II Application and BSP from Template

To create new Nios II C/C++ application and BSP projects, perform the following
steps:

1. Start the Nios II SBT for Eclipse. On Windows computers, click Start, point to
Programs, Altera, Nios II EDS <version>, and then click Nios II <version>
Software Build Tools for Eclipse. On Linux computers, run the executable file
<Nios II EDS install path>/bin/eclipse-nios2.

2. If the Workspace Launcher dialog box appears, click OK to accept the default
workspace location.

3. On the Window menu, point to Open Perspective, and then either click Nios II,
or click Other and then click Nios II to ensure you are using the Nios II
perspective.

4. On the File menu, point to New, and then click Nios II Application and BSP
from Template.
The Nios II Application and BSP from Template wizard appears.

5. Under Target hardware information, next to SOPC Information File name,
browse to locate the <design files directory>.

6. Select first_nios2_system.sopcinfo and click Open.
Nios II Application and BSP from Template wizard will show the current
information for the SOPC Information File name and CPU name fields.

7. In the Project name box, type count_binary.

8. In the Templates list, select Count Binary

9. Click Finish.

The Nios II SBT for Eclipse creates and displays the following new projects in the
Project Explorer view, typically on the left side of the window:

• count_binary—Your C/C++ application project

• count_binary_bsp—A board support package that encapsulates the details of
the Nios II system hardware

3.6.5.8.2 Compile the Project

You have to compile the project to produce an executable software image. For the
tutorial design example, you must first adjust the project settings to minimize the
memory footprint of the software, because your Nios II hardware system contains only
20 KB of memory. To adjust the project settings and compile the project, perform the
following steps:

1. In the Project Explorer view, right-click count_binary_bsp and click
Properties. The Properties for count_binary_bsp dialog box appears.

2. Click the Nios II BSP Properties page. The Nios II BSP Properties page contains
basic software build settings.

Though not needed for this tutorial, note the BSP Editor button in the lower right
corner of the dialog box. You use the Nios II BSP Editor to access advanced BSP
settings.

3. Adjust the following settings to reduce the size of the compiled executable:

a. Turn on enable_reduced_device_drivers.
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b. Turn off enable_gprof.

c. Turn on enable_small_c_library.

d. Turn off enable_sim_optimize.

4. Click OK.
The BSP regenerates, the Properties dialog box closes, and you return to the
Nios II SBT for Eclipse.

5. In the Project Explorer view, right-click the count_binary project and click
Build Project.

The Build Project dialog box appears, and the Nios II SBT for Eclipse begins
compiling the project. When compilation completes, a count_binary build
complete message appears in the Console view.

3.6.5.9 Run the Program on Target Hardware

To download the software executable to the target board, perform the following steps:

1. Right-click the count_binary project, point to Run As, and then click Nios II
Hardware.

If the Run Configurations dialog box appears, verify that Project name and
ELF file name contain relevant data, then click Run.

The Nios II SBT for Eclipse downloads the program to the FPGA on the target
board and the program starts running. When the target hardware starts running
the program, the Nios II Console view displays character I/O output. If you
connected LEDs to the Nios II system in previous section, then the LEDs blink in a
binary counting pattern.

2. Click the Terminate icon (the red square) on the toolbar of the Nios II Console
view to terminate the run session and the Nios II SBT for Eclipse will disconnect
from the target hardware.

You can edit the count_binary.c program in the Nios II SBT for Eclipse text
editor and repeat these two steps to witness your changes executing on the target
board. If you rerun the program, buffered characters from the previous run
session might display in the Console view before the program begins executing.

Related Links

Integrate the Qsys System into the Quartus Prime Project on page 80
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3.7 Qsys System Design Tutorial

This tutorial introduces you to the Qsys system integration tool available with the
Quartus Prime software.

This tutorial shows you how to design a system that uses various test patterns to test
an external memory device. It guides you through system requirement analysis,
hardware design tasks, and evaluation of the system performance, with emphasis on
system architecture.

In this tutorial, you create a memory tester system that tests a synchronous dynamic
random access memory (SDRAM) device. The final system contains the SDRAM
controller and instantiates a Nios® II processor and embedded peripherals in a
hierarchical subsystem. The final design includes various Qsys components that
generate test data, access memory, and verify the returned data.

The memory tester components for the design are Verilog HDL components with an
accompanying Hardware Component Description File (_hw.tcl) that describes the
interfaces and parameterization of each component. The _hw.tcl files are located in
the tt_qsys_design\memory_tester_ip directory.

The final system contains the following components:

• Processor subsystem based on the Nios II/e core, which includes an on-chip RAM
to store the processor's software code, and a JTAG UART to communicate via JTAG
and display the memory test results in the host PC's console.

• SDRAM controller to control the off-chip DDR SDRAM device under test.

• Custom and pseudo-random binary sequence (PRBS) pattern generators and
checkers to test the robustness of links.

• Pattern select multiplexer and demultiplexer to choose between the two pattern
generators and checkers.

• Pattern writer and reader that interact with the SDRAM controller.

• Memory test controller.

Each section in this tutorial provides an overview describing the components that you
instantiate. You can use the final system on hardware without a license, and perform
the following actions with Intel's free OpenCore Plus evaluation feature:

• Simulate the behavior of the system and verify its functionality.

• Generate time-limited device programming files for designs that incorporate Intel
or partner IP.

• Program a device and verify your design in hardware.

You can use the Nios II/e processor and the DDR SDRAM IP cores with a Quartus
Prime subscription license. Design files for other development kit boards use different
DDR SDRAM controllers to match the memory device available on the development
kit.

In this tutorial, you instantiate the complete memory tester system in the top-level
system along with the processor IP Cores, which are grouped as their own processor
system, and the SDRAM Controller IP. The Nios II processor includes a software
program to control the memory tester system, which communicates with the SDRAM
Controller to access the off-chip SDRAM device under test.
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Figure 28. Qsys Memory Tester
The components in the memory tester system are grouped into a single Qsys system
with three major design functions. The design hierarchy allows you to instantiate the
data pattern generator and data pattern checker components into separate systems.
You can then add the memory tester system with the memory master and controller
components.
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Related Links

AN320: OpenCore Plus Evaluation of Megafunctions

3.7.1 Software and Hardware Requirements

The Qsys System Design tutorial requires the following software and hardware
requirements:

• Intel Quartus Prime software.

• Nios II EDS.

• tt_qsys_design.zip design files, available from the Qsys Tutorial Design
Example page. The design files include project files set up for select Intel
development boards, and components that you can use in any Qsys design.
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You can build the Qsys system in this tutorial for any Intel development board or your
own custom board, if it meets the following requirements:

• An Intel Arria, Cyclone, or Stratix series FPGA.

• Minimum of 12k logic elements (LEs).

• Minimum of 128k of embedded memory.

• JTAG connection to the FPGA that provides a communications link back to the host
so that you can monitor the memory test progress.

• Any memory that has a Qsys-based controller with an Avalon® Memory-Mapped
(Avalon-MM) slave interface.

Related Links

• Intel FPGA Software Installation and Licensing Manual.

• Qsys Tutorial Design Example

• Qsys Tutorial Design Example (detailed diagram)

3.7.2 Download and Install the Tutorial Design Files

1. On the Qsys Tutorial Design Example page, under Using this Design
Example, click Qsys Tutorial Design Example (.zip) to download and install
the tutorial design files for the Qsys tutorial.

2. Extract the contents of the archive file to a directory on your computer. Do not use
spaces in the directory path name.

In place of following all steps in this tutorial to create subsystem, hierarchical, and
top-level design files, you can copy the completed design files listed below into the
tt_qsys_design\quartus_ii_projects_for_boards
\<development_board_type> directory, depending on your board type.

• The two completed subsystems: pattern_generator_system.qsys, and
pattern_checker_system.qsys from the tt_qsys_design
\completed_subsystems directory.

• The hierarchical system memory_tester_system.qsys from the
tt_qsys_design\completed_subsystems
\completed_memory_tester_system directory.

• The top-level hierarchical system top_system.qsys from the tt_qsys_design
\quartus_ii_projects_for_boards\<development_board_type>
\backup_and_completed_top_system\completed_top_system directory.

Related Links

• Qsys Tutorial Design Example

• Qsys Tutorial Design Example (.zip)

• Detailed Diagram of the Memory Tester System
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3.7.3 Open the Tutorial Project

The design files for the Qsys tutorial provide the custom IP design blocks that you
need, and a partially completed Quartus Prime project and Qsys system.

The following design requirements are included in the Qsys tutorial design files:

• Quartus Prime project I/O pin assignments and Synopsys Design Constraint (.sdc)
timing assignments for each supported development board.

• Parameterized Nios II processor core and software to communicate with the host
PC that controls the memory test system that you develop.

• Parameterized DDR SDRAM controller to use the memory on the development
board.

To open the tutorial project:

1. Open the Quartus Prime software.

2. To open the Quartus Prime Project File (.qpf) for your board, click File ➤ Open
Project.

3. Browse to the tt_qsys_design\quartus_ii_projects_for_boards
\<development_board>\ directory.

4. Select the relevant board-specific .qpf file, and then click Open.

3.7.4 Creating Qsys Systems

The data pattern generator and data pattern checker are design blocks for the
memory tester system. In this tutorial, you learn to instantiate, parameterize, and
connect components by creating the data pattern generator and data pattern checker
Qsys systems.

• Data pattern generator—The data pattern generator generates high-speed
streaming data, which performs either as a PRBS, or as a soft programmable
sequence, for example, “walking ones.” The design sends the data with an Avalon-
Streaming (Avalon-ST) connection to the pattern writer of the memory master and
control logic. The data pattern generator writes the data to memory based on
commands issued by the controller logic. When the design writes the data to
memory, the pattern reader logic reads the contents back and sends it to the data
pattern verification logic.

• Data pattern checker—The data pattern checker accepts the data read back by
the pattern reader from an Avalon-ST connection. The design verifies the data
pattern to ensure that the pattern it writes to memory is identical to the data that
it reads back.

3.7.4.1 Create a Data Pattern Generator Qsys System

The data pattern generator includes two components to generate test patterns, and a
third component to multiplex the data that a processor controls. You configure the
pattern generator to match the width of the memory interface. Because the data
pattern generator provides a full word of data every clock cycle, configuring the
components to match the memory width provides sufficient bandwidth to access the
memory.
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Note: As you add components and make connections in your Qsys system, error and
warning messages appear in the Qsys Messages tab, indicating steps that you must
perform before the system is complete. Some error messages appear between steps
and are not resolved immediately; as you progress through the tutorial, errors are
resolved, and the error messages disappear.

You must use the exact system names described in this tutorial in order for the
provided scripts to function correctly.

3.7.4.1.1 Create a New Qsys System and Set up the Clock Source

1. In the Quartus Prime software, click Tools ➤ Qsys to create a new Qsys design.

2. In the System Contents tab, Qsys shows a clock source instance, clk_0. To open
the clock source settings, right-click clk_0, and then click Edit.

3. Turn off Clock frequency is known to indicate that, when created, the higher-
level hierarchical system that instantiates this subsystem provides the clock
frequency.

4. Click Finish.

5. Click File ➤ Save As to save the Qsys system.

6. In the Save As dialog box, type pattern_generator_system, and then click
Save.

If Qsys prompts you to open the top_system.qsys file, click Cancel in the Open
dialog box

3.7.4.1.2 Add a Pipeline Bridge

The components that make up the data pattern generator include several Avalon-MM
slave interfaces. To allow a higher-level system to access the Avalon-MM slave
interfaces by reading and writing to a single slave interface, you can consolidate the
slave interfaces behind an Avalon-MM pipeline bridge, and export a single Avalon-MM
slave interface out of the system.

To determine the required address width for a bridge, you must know the required
addresses span of the other components in the system. Memory-mapped component
interfaces outside the system address each interface in the system by specifying a
memory offset value relative to the base address of the bridge.

A pipeline bridge can also improve system timing performance by optionally adding
pipeline registers to the design.

1. In the Library search box, type bridge to filter the component list and show only
bridge components.

2. Select Avalon-MM Pipeline Bridge, and then click Add.

3. In the parameter editor, under Parameters, type 11 for the Address width.
This width accommodates the memory span of all memory-mapped components
behind the bridge in this system. As you add the other components in the system,
you specify their base addresses within the span of the address space.

4. Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name
mm_bridge_0.
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5. On the System Contents tab, right-click mm_bridge_0, click Rename, and
then type mm_bridge.

6. In the Clock column for the mm_bridge clk interface, select clk_0 from the list.

7. To export the mm_bridge s0 interface, double-click the Export column, and then
type slave.

3.7.4.1.3 Add a Custom Pattern Generator

The pattern generator generates multiple test patterns to test the off-chip SDRAM
device. The custom pattern generator system provides a stream of pattern data via an
Avalon-ST source interface.

The component is programmed with the pattern data and a pattern length. When the
end of the pattern is reached, the custom pattern generator cycles back to the first
element of the pattern. This custom pattern generator generates the following
standard memory tester patterns:

• Walking ones

• Walking zeros

• Low frequency

• Alternating low frequency

• High frequency

• Alternating high frequency

• Synchronous PRBS

The width of the memory dictates the walking ones or zeros pattern lengths. For
example, when testing a 32-bit memory, the walking ones or zeros pattern is 32
elements in length before repeating. The high and low frequency patterns contain only
two elements before repeating. The synchronous PRBS pattern is the longest pattern
containing 256 elements before repeating.

This custom pattern generator contains three interfaces, two of which control the
generated pattern, and a third interface which control the behavior of the custom
pattern generated. The processor accesses the pattern_access interface, which is write
only, to program the elements of the custom pattern that are sent to the pattern
writer core, and the csr interface, which is used for the control and status registers.
The st_pattern_output is the streaming source interface that sends data to the pattern
writer core.

To add the custom pattern generator:

1. In the IP Catalog, expand Memory Test Microcores, and then double-click
Custom Pattern Generator.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to custom_pattern_generator.

4. Set the custom_pattern_generator clock interface to clk_0.
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5. To connect the custom_pattern_generator csr interface to the mm_bridge m0
interface, in the Connections column, click to fill in the connection dot between
the custom_pattern_generator csr interface and the mm_bridge m0
interface.

6. Connect the custom_pattern_generator pattern_access interface to the
mm_bridge m0 interface.
The processor accesses the system through the m0 interface to communicate with
the csr and pattern_access interfaces.

7. To assign the custom_pattern_generator csr interface to a base address of
0400, in the Base column, double-click the 0x00000000 address, and then enter
400 for the base address, which is in hexadecimal format.
If the Base column is locked for the custom_pattern_generator csr, right-click
and then click Unlock Base Address.

The address space represents memory accessible by the processor. Each address
specifies a location in memory that can be addressed and accessed, and each interface
must have a unique address range. The address space of each interface is determined
by its base address and its memory span, or how much memory is required for that
interface.

You can see the default address range of the pattern_access interface in the Base and
End columns on the System Contents tab.

You assign a base address for the csr interface that is higher than the end address of
the pattern_access interface to avoid conflicting with the address space of the
pattern_access interface.

3.7.4.1.4 Add a PRBS Pattern Generator

The output of the PRBS pattern generator is a statically-defined PRBS pattern. You can
specify the pattern length before the pattern repeats in the parameter editor. The
pattern length is defined by 2^(data width) – 1.

For example, a 32-bit PRBS pattern generator repeats the pattern after it sends
4,294,967,295 elements. You set the width of the PRBS generator based on the (local)
data width of the memory on your board.

The PRBS pattern generator has two interfaces; the csr and the st_pattern_output
streaming source interface. The csr interface controls the behavior of the PRBS
pattern generated. The st_pattern_output streaming source interface sends data to
the pattern writer component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS
Pattern Generator.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to prbs_pattern_generator.

4. Set the prbs_pattern_generator clock interface to clk_0.

5. Connect the prbs_pattern_generator csr interface to the mm_bridge m0
interface.

6. Assign the prbs_pattern_generator csr interface to a base address of 0x0420,
which is a base address just higher than the end address of the
custom_pattern_generator csr interface of 0x410.
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3.7.4.1.5 Add a Two-to-One Streaming Multiplexer

You add a two-to-one streaming multiplexer between the pattern generators and the
pattern writer because the system has two pattern sources, and the pattern writer
component accepts data only from one streaming source. The two-to-one streaming
soft programmable multiplexer IP core allows the processor to select which pattern to
send to the pattern writer.

The two-to-one streaming multiplexer component has the following interfaces:

• Two streaming inputs: st_input_A and st_input_B.

• One streaming output: st_output.

• One csr slave interface, which the processor controls to select whether input A or
input B is sent to the streaming output.

The custom pattern generator connects to input A, and the PRBS pattern generator
connects to input B.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click Two-
to-one Streaming Mux.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to two_to_one_st_mux.

4. Set the two_to_one_st_mux clock to clk_0.

5. Connect the two_to_one_st_mux st_input_A interface to the
custom_pattern_generator st_pattern_output interface.

6. Connect the two_to_one_st_mux st_input_B interface to the
prbs_pattern_generator st_pattern_output interface.

7. Connect the two_to_one_st_mux csr interface to the mm_bridge m0
interface.

8. Export the two_to_one_st_mux st_output interface with the name
st_data_out.

9. Assign the two_to_one_st_mux csr interface to a base address of 0x0440,
which is a base address higher than the end address of the
prbs_pattern_generator csr interface at base address 0x0420

The output of the two-to-one streaming multiplexer carries the pattern data from
either the custom pattern generator or the PRBS pattern generator, to the pattern
writer. The data, from the output of the two-to-one streaming multiplexer, achieves a
throughput of one word per clock cycle.

3.7.4.1.6 Verify the Memory Address Map

You control the system by accessing the memory locations allocated to each
component within the subsystem. To ensure that the memory map of the system you
create matches the memory map of other components, you must verify the base
addresses for the data pattern generator system.

On the Address Map tab, verify that the entries in the Address Map table match the
values in in the table below. Red exclamation marks indicate that the address ranges
overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.
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Table 11. Address Map Table

Component Address

custom_pattern_generator.csr 0x00000400 – 0x0000040f

custom_pattern_generator.pattern_access 0x00000000 – 0x000003ff

prbs_pattern_generator.csr 0x00000420 – 0x0000043f

two_to_one_st_mux.csr 0x00000440 – 0x00000447

3.7.4.1.7 Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Qsys allows multiple reset domains, or one reset signal for the
system. In the design, you want to connect all the reset signals with the incoming
reset signal. To connect all the reset signals, on the System menu, select Create
Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you
have any error messages in the Messages tab, review the procedures to create this
system to ensure you did not miss a step. You can view the reset connections and the
timing adapters on the System Contents tab, and by selecting Show System With
Qsys Interconnect on the System menu.

3.7.4.1.8 Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.4.2 Create a Data Pattern Checker Qsys System

The data pattern checker system receives a pattern from SDRAM and verifies it
against the pattern from the data pattern generator. The pattern reader sends the
data to a one-to-two streaming demultiplexer that routes the data to either the
custom pattern checker or the PRBS pattern checker. The one-to-two streaming
demultiplexer is soft programmable so that the processor can select which pattern
checker IP core should verify the data that the pattern reader reads. The custom
pattern checker is also soft programmable and is configured to match the same
pattern as the custom pattern generator.

Refer to the Qsys Memory Tester figure for a graphical description.

3.7.4.2.1 Create a New Qsys System and Set Up the Clock Soource

1. In the Quartus Prime software, click Tools ➤ Qsys to create a new Qsys design.

2. In the System Contents tab, Qsys shows a clock source instance, clk_0. To open
the clock source settings, right-click clk_0, and then click Edit.

3. Turn off Clock frequency is known to indicate that, when created, the higher-
level hierarchical system that instantiates this subsystem provides the clock
frequency.

4. Click Finish.

5. Click File ➤ Save As to save the Qsys system.

6. In the Save As dialog box, type pattern_checker_system, and then click Save.
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3.7.4.2.2 Add a Pipeline Bridge

1. In the Library search box, type bridge to filter the component list and show only
bridge components.

2. Select Avalon-MM Pipeline Bridge, and then click Add.

3. In the parameter editor, under Parameters, type 11 for the Address width.
This width accommodates the memory span of all memory-mapped components
behind the bridge in this system. As you add the other components in the system,
you specify their base addresses within the span of the address space.

4. Accept all other default settings, and then click Finish.
The pipeline bridge is added to your system with the instance name
mm_bridge_0.

5. On the System Contents tab, right-click mm_bridge_0, click Rename, and
then type mm_bridge.

6. In the Clock column for the mm_bridge clk interface, select clk_0 from the list.

7. To export the mm_bridge s0 interface, double-click the Export column, and then
type slave.

3.7.4.2.3 Add a Custom Pattern Checker

The custom pattern checker performs the opposite operation of the custom pattern
generator. It has a streaming input interface, st_pattern_input, that accepts data
from the one-to-two streaming demultiplexer. The processor uses the Avalon-MM csr
slave interface to control the component. The custom packet checker also has a
memory-mapped slave interface, pattern_access, that the processor uses to
program the same patterns as the custom pattern generator component.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click
Custom Pattern Checker.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to custom_pattern_checker.

4. Set the custom_pattern_checker clock to clk_0.

5. Connect the custom_pattern_checker csr interface to the mm_bridge m0
interface.

6. Connect the custom_pattern_checker pattern_access interface to the
mm_bridge m0 interface.

7. Assign the custom_pattern_checker csr interface to a base address of
0x0420.

8. Maintain the custom_pattern_checker pattern_access interface base address
of 0x0000.

3.7.4.2.4 Add the PRBS Pattern Checker

The PRBS pattern checker performs the opposite operation of the PRBS pattern
generator. The processor uses the memory-mapped csr slave interface to control the
component. The st_pattern_input streaming input accepts data from the one-to-two
streaming demultiplexer.
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1. In the IP Catalog, expand Memory Test Microcores, and then double-click PRBS
Pattern Checker.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to prbs_pattern_checker.

4. Set the prbs_pattern_checker clock to clk_0.

5. Connect the prbs_pattern_checker csr interface to the mm_bridge m0
interface.

6. Assign the prbs_pattern_checker csr interface to a base address of 0x0440.

3.7.4.2.5 Add a One-to-Two Streaming Demultiplexer

The one-to-two streaming demultiplexer performs the opposite operation of the two-
to-one streaming multiplexer. It has a streaming input interface, st_input, that
accepts data from the pattern reader, and two streaming output interfaces,
st_output_A and st_output_B, that connect to the custom pattern generator and
PRBS pattern generator. To allow the processor to program the data route through the
component, the system includes the slave interface, csr.

1. In the IP Catalog, expand Memory Test Microcores, and then double-click One-
to-two Streaming Demux.

2. In the parameter editor, accept the default parameters, and then click Finish.

3. Rename the instance to one_to_two_st_demux.

4. Set the one_to_two_st_demux clock to clk_0.

5. Export the one_to_two_st_demux st_input interface with the name
st_data_in.

6. Connect the one_to_two_st_demux csr interface to the mm_bridge m0
interface.

7. Assign the one_to_two_st_demux csr interface to a base address of 0x0400.

8. Connect the custom_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_A interface.

9. Connect the prbs_pattern_checker st_pattern_input interface to the
one_to_two_st_demux st_output_B interface.

3.7.4.2.6 Verify the Memory Address Map

On the Address Map tab, verify that the entries in the Address Map table match the
values in the table below. Red exclamation marks indicate that the address ranges
overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses, and your map matches this tutorial’s guidelines.

Table 12. Address Map Table

Component Address

one_to_two_st_demux.csr 0x00000400 - 0x00000407

custom_pattern_checker.csr 0x00000420 - 0x0000042f

custom_pattern_checker.pattern_access 0x00000000 - 0x000003ff

prbs_pattern_checker.csr 0x00000440 - 0x0000045f
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3.7.4.2.7 Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Qsys allows multiple reset domains, or one reset signal for the
system. In the design, you want to connect all the reset signals with the incoming
reset signal. To connect all the reset signals, on the System menu, select Create
Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you
have any error messages in the Messages tab, review the procedures to create this
system to ensure you did not miss a step. You can view the reset connections and the
timing adapters on the System Contents tab, and by selecting Show System With
Qsys Interconnect on the System menu.

3.7.4.2.8 Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.5 Assemble a Hierarchical System

Hierarchical systems allow you to reuse modular system components. Additionally,
hierarchical systems allow you to break large systems into smaller subsystems thus,
creating more manageable designs.

The memory tester design includes the following lower-level subsystems:

• Data pattern generator—Generates and transmits Avalon-ST data to the
memory tester components.

• Data pattern checker—Receives and verifies Avalon-ST data from the memory
tester components.
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Figure 29. Top-Level Memory Tester Design with a Processor and SDRAM Controller

Note: The hierarchical system you create is based on the lower-level
pattern_checker_system.qsys, and pattern_generator_system.qsys
subsystems that you created in previous sections. If you did not create these
subsystems in the previous section, you can use the completed versions provided with
the design files in the tt_qsys_design\completed_subsystems directory available
from the Qsys Tutorial Design Example web page. Copy these files to the
appropriate tt_qsys_design\quartus_ii_projects_for_boards\
<development_board> directory for your board.
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Related Links

Qsys Tutorial Design Example

3.7.5.1 Create the Hierarchical Memory Tester System

The memory tester system includes several slave interfaces. However, the memory
tester groups the interfaces behind a pipeline bridge that exports a single slave
interface to the top-level system. This technique allows the top-level system to access
all of the memory-mapped slave ports by reading and writing to a single pipeline
bridge slave interface. The bridge also adds a level of pipelining, which can improve
timing performance.

Figure 30. Memory Tester Design Interface
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1. In Qsys, create a new system called, memory_tester_system.

2. For the clk instance, turn off Clock frequency is known to indicate that the
higher-level hierarchical system that instantiates this subsystem provides the
clock frequency.

3. In the IP Catalog, select the Avalon-MM Pipeline Bridge to add to your Qsys
system.

4. For the Avalon-MM Pipeline Bridge, in the parameter editor, type 13 for the
Address width.
To accommodate for the address translation from master to slave, that is a byte
address as the input, and a word address (4 bytes) as the output, the address
width increases from 11.
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5. Rename the instance to mm_bridge.

6. Set the mm_bridge_clk interface to clk_0.

7. Export the mm_bridge s0 interface with the name slave.

3.7.5.1.1 Add the Pattern Generator

The custom pattern generator system provides a stream of pattern data via an
Avalon-ST source interface. You control the system by accessing the memory locations
allocated to each component within the subsystem. The system connects slave ports
to a pipeline bridge, which it then exposes outside of the system.

The pattern generator system contains the following components:

• Pipeline bridge

• Custom pattern generator

• PRBS pattern generator

• Two-to-one streaming multiplexer

• Streaming timing adapters

1. In the IP Catalog, under Project expand System, and then double-click
pattern_generator_system.

2. In the parameter editor, click Finish to accept the default settings.

3. Rename the instance to pattern_generator_subsystem.

4. Set the pattern_generator_subsystem clk to clk_0.

5. Connect the pattern_generator_subsystem slave interface to the mm_bridge
m0 interface.

6. Connect the pattern_generator_subsystem reset interface to the clk_0
clk_reset interface.

3.7.5.1.2 Add the Pattern Checker

The pattern checker system validates data that arrives via an Avalon-ST sink
interface. You control the system by accessing the memory locations allocated to each
component within the subsystem. The system connects all of the slave ports to a
pipeline bridge, which it then exposes outside of the system.

The pattern checker system contains the following components:

• Pipeline bridge

• Custom pattern checker

• PRBS pattern checker

• One-to-two demultiplexer
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1. In the IP Catalog, double-click pattern_checker_system from the System
group.

2. In the parameter editor, click Finish to accept the default settings.

3. Rename the instance to pattern_checker_subsystem.

4. Set the pattern_checker_subsystem clk to clk_0.

5. Connect the pattern_checker_subsystem slave interface to the mm_bridge
m0 interface.

6. Connect the pattern_checker_subsystem reset interface to the clk_0
clk_reset interface.

3.7.5.1.3 Add Memory Master Components

Memory masters access the SDRAM controller by writing the test pattern to the
memory and reading the pattern back for validation. The RAM test controller accepts
commands from the processor and controls the memory masters. Each command
contains a start address, test length in bytes, and memory block size in bytes. The
RAM test controller segments the commands into smaller block transfers and issues
the commands to the read and write masters independently via streaming
connections.

When the pattern reader or writer components complete a block transfer, they signal
to the RAM test controller that they are ready for another command. The RAM test
controller issues the block-sized commands independently, which minimizes the
number of idle cycles between memory transfers. The RAM test controller also ensures
that the pattern reader never overtakes the pattern writer with respect to the memory
locations it is testing, otherwise data corruption occurs.

The SDRAM controller is parameterized to use a local maximum burst length of 2. The
pattern reader and writer components are also configured to match this burst length
to maximize the memory bandwidth.

Add a Pattern Writer Component
The pattern writer component accepts memory transfer commands from the RAM test
controller with the command streaming interface. The st_data streaming interface
accepts data provided by the design’s pattern generator. The mm_data memory-
mapped interface writes the pattern data to the SDRAM controller.

1. In the IP Catalog, double-click Pattern Writer from the Memory Test
Microcores group.

2. In the parameter editor, turn on Burst Enable.

3. Ensure that the Maximum Burst Count is 2.

4. Ensure that Enable Burst Re-alignment is turned on.

5. To accept the other default parameters, click Finish.

6. Rename the instance to pattern_writer.

7. Set the pattern_writer clock to clk_0.

8. Connect the pattern_writer st_data interface to the
pattern_generator_subsystem st_data_out interface.

9. Export the pattern_writer mm_data interface with the name write_master.
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Add a Pattern Reader Component
The pattern reader component accepts memory transfer commands from the RAM test
controller with the command streaming interface. The mm_data interface reads the
pattern data from the SDRAM controller. The st_data interface sends the data read
from memory to the design’s pattern checker.

1. In the IP Catalog, double-click Pattern Reader from the Memory Test
Microcores group.

2. n the parameter editor, turn on Burst Enable.

3. Ensure the Maximum Burst Count is 2.

4. Ensure that Enable Burst Re-alignment is turned on.

5. To accept the other default parameters, click Finish.

6. Rename the instance to pattern_reader.

7. Set the pattern_reader clock to clk_0.

8. Connect the pattern_reader st_data interface to the
pattern_checker_subsystem st_data_in interface.

9. Export the pattern_reader mm_data interface with the name read_master.

Add a RAM Test Controller
The RAM test controller contains two streaming command interfaces; write_command
and read_command, that send commands to the pattern reader and pattern writer
components. These streaming interfaces issue commands effectively because Avalon-
ST interfaces offer low latency and a simple handshaking protocol, as well as because
the processor accesses a slave port, csr, to write commands to the controller.

1. In the IP Catalog, double-click RAM Test Controller from the Memory Test
Microcores group.

2. In the parameter editor, click Finish to accept the default parameters.

3. Rename the instance to ram_test_controller.

4. Set the ram_test_controller clock to clk_0.

5. Connect the ram_test_controller write_command interface to the
pattern_writer_command interface.

6. Connect the ram_test_controller read_command interface to the
pattern_reader_command interface.

7. Connect the ram_test_controller csr interface to the mm_bridge m0 interface.

Do not use the Generation tab at this point in the tutorial to generate HDL code for
these subsystems. You must generate files for the entire top-level system, which
includes all the subsystems. The batch script provided for you to program the device
requires that only one system is generated in the project directory. The top-level
design includes a Nios II subsystem, and the Nios II software build tools require the
SOPC Information File (.sopcinfo) to be generated for the top-level design. If there are
multiple .sopcinfo files, the batch script to program the device fails with an error from
the software build tools.
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3.7.5.1.4 Connect the Reset Signals

You must connect all the reset signals, which eliminates the error messages in the
Messages tab. Qsys allows multiple reset domains, or one reset signal for the
system. In the design, you want to connect all the reset signals with the incoming
reset signal. To connect all the reset signals, on the System menu, select Create
Global Reset Network.

At this point in the system design, Qsys shows no remaining error messages. If you
have any error messages in the Messages tab, review the procedures to create this
system to ensure you did not miss a step. You can view the reset connections and the
timing adapters on the System Contents tab, and by selecting Show System With
Qsys Interconnect on the System menu.

3.7.5.1.5 Verify the Memory Address Map

To ensure that the memory map of the system you create matches the memory map
of other components, you must verify the base addresses for the memory tester
system. In Qsys, on the Address Map tab, verify that the entries in Address Map table
match the values in Table 3–1. Red exclamation marks indicate that the address
ranges overlap. Correct the base addresses, as appropriate, to ensure there are no
overlapping addresses.

Table 13. Address Map Table

Component Base Address Address

mm_bridge_0.s0 N/A N/A

pattern_generator_subsystem.slave 0x0 0x00000000 – 0x000007ff

pattern_checker_subsystem.slave 0x1000 0x0001000 – 0x000017ff

ram_test_controller.csr 0x800 0x00000800 – 0x0000081f

3.7.5.1.6 Save the System

At this point, there should be no remaining error messages in the Messages tab, and
the system is complete. Save the system.

3.7.5.2 Complete the Top-Level System

1. In Qsys, open the top_system.qsys file from the tt_qsys_design
\quartus_ii_projects_for_boards\<development_board> directory.
The top-level system is set up for your development board, with an external clock
source, a processor system, and an SDRAM controller. You can view the clocks in
top-level system on the Clock Settings tab, and the partially-completed system
connections on the System Contents tab.

2. In the IP Catalog, double-click memory_tester_system from the System group.

3. Click Finish to accept the default parameters, and to add the memory tester
system to the top-level system.

4. Rename the system to memory_tester_subsystem.

5. On the System Contents tab, use the arrows to move the
memory_tester_subsystem up between the cpu_subsystem and the sdram.
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Since the cpu_subsystem controls the memory_tester_subsystem, and the
memory_tester_subsystem controls the sdram, this positioning allows you to
more easily visualize system performance.

6. Set the memory_tester_subsystem clk to either the sdram_sysclk (for
ALTMEMPHY-based designs), or sdram_afi_clk (for UniPHY-based designs).
Some boards have an FPGA and SDRAM device that use either the Intel DDR or
DDR2 SDRAM Controller with ALTMEMPHY; others use the Intel DDR3 SDRAM
controller with UniPHY.

7. Connect the memory_tester_subsystem reset interface to the ext_clk
clk_reset interface.

8. Connect the memory_tester_subsystem reset interface to the
cpu_subsystem cpu_jtag_debug_reset interface.
This design exports the Nios II processor JTAG debug reset output interface,
jtag_debug_module_reset, from the cpu_subsystem with the interface name
cpu_ jtag_debug_reset. The design must connect this Nios II reset output to
any component reset inputs that require resetting by the Nios II processor code or
JTAG interface, and also to the Nios II processor's reset input interface. The
cpu_subsystem cpu_reset interface connects to the Nios II processor's reset
input interface. The top_level.qsys file connects the cpu_jtag_debug_reset
interface to the cpu_reset interface.

9. Connect the memory_tester_subsystem write_master and read_master
interfaces to either the sdram s1 interface (for ALTMEMPHY-based designs), or
sdram avl interface (for UniPHY-based designs).

10. Connect the memory_tester_subsystem slave interface to the
cpu_subsystem master interface.

11. Maintain the base addresses of 0x0 for the memory_tester_subsystem slave
interface, and for either the sdram s1 interface (for ALTMEMPHY-based designs),
or sdram avl interface (for UniPHY-based designs).

The two slave interfaces can use the same address map range because different
masters control them. The cpu_subsystem master interface controls the
memory_tester_subsystem, and the memory_tester_subsystem write_master
and read_master interfaces control the sdram interface.

3.7.6 Viewing the Memory Tester System in Qsys

You can use the Hierarchy tab, accessed from the View menu, to show the complete
hierarchy of your design. The Hierarchy tab is a full system hierarchical navigator,
which expands the system contents to show modules, interfaces, signals, contents of
subsystems, and connections. The graphical interface of the Hierarchy tab displays a
unique icon for each element represented in the system, including interfaces,
directional pins, IP blocks, and system icons that show exported interfaces and the
instances of components that make up a system.

Click Generate ➤ HDL Example to view the HDL for an example instantiation of the
system. The HDL example lists the signals from the exported interfaces in the system.
The signal names are the exported interface name followed by an underscore, and
then the signal name specified in the component or IP core. Most of the signals
connect to the external SDRAM device.
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3.7.7 Compiling and Downloading Software to a Development Board

Intel recommends that you download the memory tester system to a development
board to complete the design process and test the memory interface of the board. If
you do not have a development board you can follow the steps provided in the
accompanying readme.txt file to learn more details about porting designs to FPGA
devices or boards.

The Intel provided software tests the memory using various test parameters and
patterns, and is scripted for compilation and download to the board.

1. To download the top-level system to a development board, in Qsys, click
Generate ➤ Generate.

2. Select the language for Create HDL design files for synthesis, and turn off the
option to create a Block Symbol File (.bsf).

3. Click Generate. Qsys generates HDL files for the system and the Quartus Prime IP
File (.qip) that provides the list of required HDL files for the Quartus Prime
compilation.

4. When Qsys completes the generation, click Close.

5. In the Quartus Prime software, on the Project menu, click Add/Remove Files in
Project and verify that the newly-generated .qip file, top_system.qip, and the
timing constraints file, my_constraints.sdc appear in the Files list.

6. Click Processing ➤ Start Compilation. When compilation completes, click OK.

7. Connect the development board to a supported programming cable.

8. Click Tools ➤ Nios II Command Shell [gcc4].

9. Type the following command to emulate your local c:/ drive for your Windows
environment: cd /cygdrive/c/.

10. Navigate to the quartus_ii_projects_for_boards\<development_board>
\software directory.

11. Type the following command at the Nios II command Shell: ./batch_script.sh.
The batch script compiles the Nios II software and downloads the SRAM Object
File (.sof) programming file to the FPGA.

The terminal window shows messages indicating the progress. If you see error
messages related to the JTAG chain, check your programming cable installation and
board setup to ensure that it is set up correctly.

After the script configures the FPGA, it downloads the compiled Nios II software to the
board and establishes a terminal connection with the board. The test software
performs test sweeps on the SDRAM by varying the following parameters:

• Pattern type

• Memory block size

• Memory block trail distance (number of blocks by which the pattern reader trails
the pattern writer)

• Memory span tested
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Ensure that you have only one set of generated system files in the project directory,
otherwise the batch script to program the device fails with an error from the software
build tools.

The memory throughput values appear in the command terminal as the memory is
tested. These values are reported in hexadecimal and represent the number of clock
cycles required to test the entire SDRAM address span. The output is restricted to
hexadecimal due to a small software library that prints the characters to the terminal.
Because the memory tester system writes to the memory and then reads it back, the
number of bytes it accesses and reports in the transcript window is double the
memory span. This number varies depending on the span of memory being tested for
your memory device. Knowing the data width of the memory interface, the number of
bytes transferred, and the number of clock cycles for the transfer, you can determine
the memory access efficiency.

The SDRAM controller in the top-level Qsys system has a 32-bit local interface width,
therefore memory data width in bytes is 4 bytes for the tutorial design.

Efficiency = 100 × total bytes transferred/(memory data width in bytes × total 
clock cycles)

The memory test runs until the design finishes testing the complete memory. To end
the test early, type Ctrl+C in the command window. To calculate the efficiency for the
last throughput numbers in, convert the hexadecimal numbers to decimal, as follows:

• 0x4000000 bytes transferred is 0d67108864 total bytes transferred

• 0x107d856 clock cycles is 0d17291350 total clock cycles

Therefore, the efficiency for this example is:

100 × 67108864 / (4 × 17291350) = 97.0%

3.7.8 Debugging Your Design

If the memory test starts but does not complete successfully, the terminal displays
failure messages. If you see failure messages from the memory test, review the
previous sections and check that you have completed all of the instructions in this
tutorial successfully. A missed connection or incorrect memory address assignment
may cause the tester design to fail on the board.

Intel provides completed systems, so that you can verify your system designs. You
can copy the completed systems into the project directory with different names, so
that you can open two different instances of Qsys for a side-by-side comparison.
Alternatively, you can replace your systems with the provided completed systems to
run the memory tester design successfully.

3.7.9 Verifying Hardware in System Console

You can use the Quartus Prime System Console to verify your system design. The
design example files include scripts that exercise your system using System Console
Tcl commands. The example uses a JTAG-to-Avalon Master Bridge component to drive
the slave components, instead of a Nios II processor system.
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The \quartus_ii_projects_for_boards\<development_board>
\system_console directory contains the run_sweep.tcl, base_address.tcl, and
test_cases.tcl scripts. You use these scripts to set up and run memory tests on the
development board projects. You can view the scripts to help you understand the
System Console commands that drive the slave component registers. The scripts work
with any board, if you keep the same Qsys system structure.

The run_sweep.tcl file is the main script, which calls the other two scripts. The
base_address.tcl file includes information about the base addresses of the slave
components from the previous chapters. If you change the base addresses of the
slave components, you must also change the addresses in the base_address.tcl
file. The test_cases.tcl file includes settings for memory span, memory block
sizes, and memory block trail distance.

The run_sweep.tcl file contains Tcl commands for the following actions:

• Initialize the components

• Adjust test parameters

• Start the PRBS pattern checker, PRBS pattern generator, and RAM controller

• Continuously poll the stop and fail bits in the PRBS checker

3.7.9.1 Open the Tutorial Project

You can use completed design files in the tt_qsys_design
\quartus_ii_projects_for_boards\<development_board> directory.

1. Open the Quartus Prime project in the project directory for your development
board type.

2. In Qsys, open top_system.qsys in the project directory for your development
board type.

3.7.9.2 Add the JTAG-to-Avalon Master Bridge

The JTAG-to-Avalon master bridge acts as a bridge between the JTAG interface and
the system's memory tester.

1. In the IP Catalog select JTAG to Avalon Master Bridge, and then click Add.

2. In the parameter editor, click Finish to accept the default parameters.

3. Rename the instance to jtag_to_avalon_bridge.

4. Connect the jtag_to_avalon_bridge master interface to the
memory_tester_subsystem slave interface.

5. Set the jtag_to_avalon_bridge clk domain to sdram_sysclk.

6. Connect the jtag_avalon_bridge clk_reset interface to the ext_clk clk_reset
interface.

7. Connect the jtag_avalon_bridge clk_reset interface to either the sdram
reset_request_n interface (for ALTMEMPHY-based designs), or sdram afi_reset
interface (for UniPHY-based designs).

3 Hardware System Design with Quartus Prime and Qsys

Embedded Design Handbook
108



8. Connect the jtag_avalon_bridge master_reset interface to the
memory_tester_subsystem reset interface, and to either the sdram
soft_reset_n interface (for ALTMEMPHY-based designs), or sdram soft_reset
interface (for UniPHY-based designs).

9. To disable the cpu_subsystem system, in the Use column, turn off Use, since
you are replacing its function with the bridge and System Console.

10. Save the jtag_to_avalon_bridge system.

3.7.9.3 Debug with System Console

The design example scripts test the memory in loops for different block sizes, that is,
the number of bytes to group together in a single instance of back-to-back reads or
writes. The scripts also test the memory in loops for different memory block trails,
that is, the number of blocks by which the pattern reader trails the pattern writer.

1. To download the programming file to your development board, in Qsys, click
Generate ➤ Generate.

2. Select the language for Create HDL design files for synthesis.

3. Click Generate. Qsys generates HDL files for the system and the .qip file, which
provides the list of required HDL files for the Quartus Prime compilation.

4. When Qsys completes the generation, click Close.

5. In the Quartus Prime software, click Project ➤ Add/Remove Files in Project,
and verify that the project contains the top_system.qip.

6. Click Processing ➤ Start Compilation. When compilation completes, click OK.

7. Connect the development board to a supported programming cable.

8. Click Tools ➤ Programmer.

9. Check that the Programmer displays the correct programming hardware.
Otherwise, click Hardware Setup and select the correct programming hardware,
and then click Close.

10. To program the device, click Start.

11. In Qsys, click Tools ➤ System Console.

12. Before you execute scripts in System Console, navigate to the directory for the Tcl
scripts, and then in Qsys System Console window, click File ➤ Execute Script.

13. To start the memory tests, run the run_sweep.tcl file from the
tt_qsys_design\quartus_ii_projects_for_boards
\<development_board> \system_console directory.
When you run the run_sweep.tcl script, the System Console displays the
progress of the tests in the Messages tab. The tests perform test sweeps on the
SDRAM by varying the memory block size and memory block trail distance. When
the tests finish successfully, Qsys generates a message that reports successful
completion.

3.7.10 Simulating Custom Components

You can simulate a custom component with Qsys and the Avalon Verification IP Suite.
You use Qsys to generate a testbench system for the design under test, and then
perform a functional simulation with the ModelSim simulator. The Qsys-generated
testbench uses the Avalon Verification IP Suite components.
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Figure 31. Typical Qsys Test Environment
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3.7.10.1 Generate a Testbench System in Qsys

The custom pattern generator generates high-speed streaming data for testing
memory devices. The soft-programmable custom pattern generator can generate
multiple test patterns, and is programmed with the pattern data and pattern length.
When the end of the pattern is reached, the custom pattern generator cycles back to
the first element of the pattern.

If you do not want to use the Qsys-generated testbench system, you can create your
own Qsys testbench system by adding the Avalon Verification Suite Bus Functional
Models (BFMs) or your own models for simulation. You can also generate a Qsys
simulation model for the design or Qsys system under test, and use your own custom
HDL testbench to provide the simulation stimulus.
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3.7.10.1.1 Create a New Qsys System for the Design Under Test

1. In the Quartus Prime software, open the Quartus Prime Project File,
qsys_sim_tutorial.qpf, from the \simulation_tutorial directory.

2. In Qsys, click File ➤ New System to create a new Qsys design.

3. To remove the clock source, which is not needed for this design, right-click clk_0,
and then click Remove.

4. In the IP Catalog, select Custom Pattern Generator from the Memory Test
Microcores group, and then click Add.

5. In the parameter editor, click Finish to accept the default parameters.

6. Rename the instance to pg to provide a short instance name for the pattern
generator.

3.7.10.1.2 Export Design Under Test

1. In Qsys, on the System Contents tab, in the Export column, for each interface
click Double-click to export, and maintain the default export names.

2. Save the system as pattern_generator.

3.7.10.1.3 Generate a Testbench System

1. In Qsys click Generate ➤ Generate Testbench System.

2. Under Testbench System, for Create testbench Qsys system, select
Standard, BFMs for standard Qsys interfaces.

3. Under Synthesis, select None for Create HDL design files for synthesis, and
turn off Create block symbol file (.bsf).

4. Click Generate.

5. After Qsys generates the testbench, click Close.

Qsys generates this testbench system in the \simulation_tutorial
\pattern_generator\testbench directory.

You can generate the simulation model for the Qsys testbench system at the same
time by turning on Create testbench simulation model. However, the Qsys-generated
testbench system's components names are assigned automatically and you may want
to control the instance names to make it easier to run the test program for the BFMs.
In this tutorial, you edit the Qsys testbench system before generating the simulation
model.

3.7.10.1.4 Generate Testbench System's Simulation Models

In this section, you open the generated Qsys testbench system and rename the BFM
component instance names to ensure the testbench names match the test program
provided with the tutorial design files. Additionally, you generate the testbench's
simulation model.

1. In Qsys, open the testbench system, pattern_generator_tb.qsys, from the
simulation_tutorial\pattern_generator\testbench directory.

2. On the System Contents tab, rename the instance as they appear in Table 5–1.
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Qsys-Generated Components' Names New Instance Name

pattern_generator_inst DUT

pattern_generator_inst_pg_clock_bfm clock_source

pattern_generator_inst_pg_reset_bfm reset_source

pattern_generator_inst_pg_csr_bfm csr_master

pattern_generator_inst_pg_pattern_access_bfm pattern_master

pattern_generator_inst_pg_pattern_output_bfm pattern_sink

3. Double-click a BFM component to open the parameter editor and view its settings.
These BFM components are available in the Avalon Verification Suite group in the
library. If necessary, you can change the parameters for the BFMs to ensure
adequate test coverage for your design.
The Qsys-generated testbench matches inserted BFMs with the exported
interfaces from the design that they drive. The test program that provides
stimulus to the BFMs must account for the matching interface. For example, an
exported Avalon-MM slave interface (which expects word-aligned addresses) is
connected to an Avalon master BFM, which expects and transacts word-aligned
addresses instead of the byte or symbol addresses that are default for Avalon
masters.

4. Click Cancel to close the parameter editor without making changes.

5. In the Generation dialog box, under Simulation, for Create simulation model,
select Verilog.

6. Under Testbench System, select None for Create testbench Qsys system and
Create testbench simulation model.

7. Under Synthesis, select None for Create HDL design files for synthesis, and
turn off Create Block design files (.bsf).

8. Save the system.

9. Click Generate.

10. After Qsys generates the testbench, click Close.

Qsys generates the testbench system’s simulation models in the
\simulation_tutorial\pattern_generator\testbench\pattern_generator_tb
\simulation directory.

Qsys generates the simulation models and a ModelSim simulation script
(msim_setup.tcl), which compiles the required files for simulation and sets up
commands to load the simulation in the ModelSim simulator. You can run this
ModelSim script in ModelSim to compile, elaborate, or load for simulation.

In this tutorial, there is an external test program to provide simulation stimulus. The
tutorial design files include a simulation script, load_sim.tcl that compiles the top-
level simulation file and test program, and calls the Qsys-generated script to compile
the required files.
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3.7.10.2 Run Simulation In the ModelSim Software

You can run a simulation in the ModelSim software on the testbench that you created.
To complete this simulation you use the test program provided in the design files. The
test begins by writing a walking ones pattern to the design under test.

This test program performs the following actions:

• Reads a pattern file.

• Writes the pattern to the design under test via the pattern master BFM.

• Sets various design under test options via the CSR master BFM.

• Starts the design under test pattern generation.

• Collects data generated by the design under test.

• Compares the results against the original pattern file.

3.7.10.2.1 Set Up the Simulation Environment

This tutorial includes test program files that you can use with the Qsys-generated
testbench and ModelSim simulation script. To learn more about Qsys simulation
support, open and review the simulation script, \simulation_tutorial\load_sim.tcl.
After your review of the script, close the script without making changes.

The load_sim.tcl script sets simulation variables to set up the correct hierarchical
paths in the Qsys-generated simulation model and ModelSim script. Additionally, the
script identifies the top-level instance name for the simulation and provides the path
to the location of the Qsys-generated files. Some functions, such as memory
initialization, rely on correct hierarchical paths names in the simulation model.

The load_sim.tcl script performs the following actions:

• Sources the Qsys-generated ModelSim simulation script, msim_setup.tcl.

• Uses the command aliases defined in the msim_setup.tcl script to compile and
elaborate the files for the Qsys testbench simulation model.

• Compiles and elaborates the extra simulation files for the tutorial—the test
program and top-level simulation file that instantiates the test program.

• Loads the wave.do file that provides signals for the ModelSim waveform view.

3.7.10.2.2 Run the Simulation

1. Start the ModelSim software.

2. Click File ➤ Change Directory, browse to the \simulation_tutorial directory,
and then click OK.

3. Click Compile ➤ Compile Options.

4. Click the Verilog & SystemVerilog tab, select Use SystemVerilog, and then
click OK.

5. Click File ➤ Load
Ensure you activate the ModelSim Transcript window, otherwise the Load function
is disabled.

6. Select the load_sim.tcl script, and then click Open.
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The warning messages relate to unused connections in an ALTSYNCRAM
megafunction. Because these ports are not used, you can ignore the warning
messages.

7. Run the simulation for 40us. To run the simulation, in the ModelSim Transcript
window type the following command: run 40us.
You can run the h command to show the available options for the
msim_setup.tcl script.

8. Observe the results.

INFO: top.tb.reset_source.reset_deassert: Reset deasserted
INFO: top.pgm: Starting test walking_ones.hex
INFO: top.pgm.read_file: Read file walking_ones.hex success
INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test walking_ones.hex passed

9. To run the low frequency test, modify \simulation_tutorial\test_include.svh
according to Table 14 on page 114.

Table 14. Values for Low Frequency Pattern Test

Macro New Value

PATTERN_POSITION 0

NUM_OF_PATTERN 2

NUM_OF_PAYLOAD_BYTES 256

FILENAME low_freq.hex

FILENAME_REV low_freq_rev.hex

10. Reload the load_sim.tcl script, run the simulation for 40us, and observe the
result in the Transcript window.

INFO: top.pgm: Starting test low_freq.hex
INFO: top.pgm.read_file: Read file low_freq.hex success
INFO: top.pgm.read_file: Read file walking_ones_rev.hex success
INFO: top.pgm: Test low_freq.hex passed

11. To run the random number pattern test, modify \simulation_tutorial
\test_include.svh according to Table 15 on page 114.

Table 15. Values for Random Number Pattern Test

Macro New Value

PATTERN_POSITION 32

NUM_OF_PATTERN 64

continued...   
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Macro New Value

NUM_OF_PAYLOAD_BYTES 1024

FILENAME random_num.hex

FILENAME_REV random_num_rev.hex

12. Reload the load_sim.tcl script, and run the simulation for 40us to observe the
following results.

INFO: top.pgm: Starting test random_num.hex
INFO: top.pgm.read_file: Read file random_num.hex success
INFO: top.pgm.read_file: Read file random_num_rev.hex success
INFO: top.pgm: Test random_num.hex passed

3.7.11 View a Diagram of the Completed System

You set up the simulation environment for the custom pattern generator component
and used BFM test code to perform simulation. You can test your own custom Qsys
components with this method to verify their functionality before you integrate them
into a complete system. You can also create a testbench system for a complete Qsys
system with this method, and test your top-level system behavior with BFMs.

On the Qsys Tutorial Design Example page, click detailed diagram under Block
Diagram to view a detailed diagram of the completed Memory Tester System.

Related Links

• Qsys Tutorial Design Example

• Detailed Diagram of the Memory Tester System
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3.8 Document Revision History

Table 16. Hardware System Design with Quartus Prime and Qsys Chapter Revision
History

Date Version Changes

June 2017 2017.06.12 New sections added:
• Nios II Gen2 Hardware Development Tutorial on page 66
• Qsys System Design Tutorial on page 87

December 2016 2016.12.19 Initial release.
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4 Software System Design with a Nios II Processor
This chapter describes the software flow in a Nios II processor system design. It
includes a detailed explanation and example on the Nios II command line tools that
are provided in the Nios II Embedded Design Suite (EDS). Descriptions of both the
Intel tools and the GNU tools are also included. Most of the commands are located in
the bon and sdk subdirectories of your EDS installation.

Included is a description on how to develop the software flow and the software tools
you can use in developing your embedded design system. Information about
development with HAL drivers is also in this chapter.
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4.1 Nios II Command-Line Tools

The Intel command line tools are useful for a range of activities, from board and
system-level debugging to programming an FPGA configuration file (.sof). For these
tools, the examples expand on the brief descriptions of the Intel-provided command-
line tools for developing Nios II programs in “Intel-Provided Embedded Development
Tools” in the Nios II Software Build Tools chapter of the Nios II Gen2 Software
Developer’s Handbook. The Nios II GCC toolchain contains the GNU Compiler
Collection, GNU Binary Utilities (binutils), and newlib C library.

All of the commands described in this section are available in the Nios II command
shell. For most of the commands, you can obtain help in this shell by typing:

<command name> --help

To start the Nios II command shell on Windows platforms, on the Start menu, click All
Programs. On the All Programs menu, on the Intel submenu, on the Nios II EDS
<version> submenu, click Nios II <version> Command Shell.

On Linux platforms, type the following command:

 <Nios II EDS install path>/nios2_command_shell.shr

The command shell is a Bourne-again shell (bash) with a pre-configured environment.

Related Links

Nios II Software Build Tools

4.1.1 Intel Command-Line Tools for Board Bringup and Diagnostics

This section describes Intel command-line tools useful for Nios development board
bringup and debugging.

4.1.1.1 jtagconfig

This command returns information about the devices connected to your host PC
through the JTAG interface, for your use in debugging or programming. Use this
command to determine if you configured your FPGA correctly.

Many of the other commands depend on successful JTAG connection. If you are unable
to use other commands, check whether your JTAG chain differs from the simple,
single-device chain used as an example in this section.

Type jtagconfig --help from a Nios II command shell to display a list of options
and a brief usage statement.
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4.1.1.1.1 jtagconfig Usage Example

To use the jtagconfig command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

jtagconfig -n

Example 4. jtagconfig Example Response

$ jtagconfig -n
1) USB-Blaster [USB-0]
020050DD EP1S40/_HARDCOPY_FPGA_PROTOTYPE
Node 11104600
Node 0C006E00

The information in the response varies, depending on the particular FPGA, its
configuration, and the JTAG connection cable type. The table below describes the
information that appears in the response in the example.

Table 17. Interpretation of jtagconfig Command Response

Value Description

USB-Blaster [USB-0] The type of cable. You can have multiple cables connected
to your workstation.

EP1S40/_HARDCOPY_FPGA_PROTOTYPE The device name, as identified by silicon identification
number.

Node 11104600 The node number of a JTAG node inside the FPGA. The
appearance of a node number between 11104600 and
11046FF, inclusive, in this system’s response confirms that
you have a Nios II processor with a JTAG debug module.

Note 0C006E00 The node number of a JTAG node inside the FPGA. The
appearance of a node number between 0C006E00 and
0C006EFF, inclusive, in this system’s response confirms that
you have a JTAG UART component.

The device name is read from the text file pgm_parts.txt in your Quartus Prime
installation. In the example above, the name is EP1S40/
_HARDCOPY_FPGA_PROTOTYPE because the silicon identification number on the JTAG
chain for the FPGA device is 020050DD, which maps to the names EP1S40<device-
specific name>, a couple of which end in the string _HARDCOPY_FPGA_PROTOTYPE.
The internal nodes are nodes on the system-level debug (SLD) hub. All JTAG
communication to an Intel FPGA passes through this hub, including advanced
debugging capabilities such as the SignalTap II embedded logic analyzer and the
debugging capabilities in the Nios II EDS.

The example above illustrates a single cable connected to a single-device JTAG chain.
However, your computer can have multiple JTAG cables, connected to different
systems. Each of these systems can have multiple devices in its JTAG chain. Each
device can have multiple JTAG debug modules, JTAG UART modules, and other kinds
of JTAG nodes. Use the jtagconfig -n command to help you understand the
devices with JTAG connections to your host PC and how you can access them.
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4.1.1.2 nios2-configure-sof

This command downloads the specified .sof and configures the FPGA according to its
contents. At a Nios II command shell prompt, type nios2-configure-sof --help
for a list of available command-line options.

You must specify the cable and device when you have more than one JTAG cable
(USB-Blaster or ByteBlaster™ cable) connected to your computer or when you have
more than one device (FPGA) in your JTAG chain. Use the --cable and --device
options for this purpose.

4.1.1.2.1 nios2-configure-sof Usage Example

To use the nios2-configure-sof command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, change to the directory in which your .sof is located. By
default, the correct location is the top-level Quartus Prime project directory.

3. In the command shell, type the following command:

nios2-configure-sof

The Nios II EDS searches the current directory for a .sof and programs it through the
specified JTAG cable.

4.1.1.3 system-console

The system-console command starts a Tcl-based command shell that supports low-
level JTAG chain verification and full system-level validation.This tool is available in the
Nios II EDS starting in version 8.0.

This application is very helpful for low-level system debug, especially when bringing
up a system. It provides a Tcl-based scripting environment and many features for
testing your system.

The following important command-line options are available for the system-console
command:

• The --script=<your script>.tcl option directs the System Console to run
your Tcl script.

• The --cli option directs the System Console to open in your existing shell, rather
than opening a new window.

• The --debug option directs the System Console to redirect additional debug
output to stderr.

• The --project-dir=<project dir> option directs the System Console to the
location of your hardware project. Ensure that you’re working with the project you
intend—the JTAG chain details and other information depend on the specific
project.

• The --jdi=<JDI file> option specifies the name-to-node mapping for the JTAG
chain elements in your project.

4 Software System Design with a Nios II Processor

Embedded Design Handbook
120



For System Console usage examples and a comprehensive list of system console
commands, refer to Analyzing and Debugging Designs with the System Console in
volume 3 of the Quartus Prime Handbook, on-line training is available.

Related Links

• Analyzing and Debugging Designs with System Console

• System Console Online Course

4.1.2 Intel Command-Line Tools for Flash Programming

This section describes the command-line tools for programming your Nios II-based
design in flash memory.

When you use the Nios II EDS to program flash memory, the Nios II EDS generates a
shell script that contains the flash conversion commands and the programming
commands. You can use this script as the basis for developing your own command-line
flash programming flow.

For more details about the Nios II EDS and command-line usage of the Nios II Flash
Programmer and related tools, refer to the Nios II Flash Programmer User Guide.

Related Links

Nios II Flash Programmer User Guide

4.1.2.1 nios2-flash-programmer

This command programs common flash interface (CFI) memory. Because the Nios II
flash programmer uses the JTAG interface, the nios2-flash-programmer command
has the same options for this interface as do other commands. You can obtain
information about the command-line options for this command with the --help
option.

Note: The nios2-flash-programmer has been replaced by the Quartus Prime
Programmer flow for EPCS.

4.1.2.1.1 nios2-flash-programmer Usage Example

You can perform the following steps to program a CFI device:

1. Follow the steps in nios2-download on page 124, or use the Nios II EDS, to
program your FPGA with a design that interfaces successfully to your CFI device.

2. Type the following command to verify that your flash device is detected correctly:

nios2-flash-programmer –debug –base=<base address>
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where <base address> is the base address of your flash device. The base address
of each component is displayed in Qsys. If the flash device is detected, the flash
memory’s CFI table contents are displayed.

3. Convert your file to flash format (.flash) using one of the utilities elf2flash,
bin2flash, or sof2flash described in elf2flash, bin2flash, and sof2flash on
page 122.

4. Type the following command to program the resulting .flash file in the CFI device:

nios2-flash-programmer –base=<base address> <file>.flashr

5. Optionally, type the following command to reset and start the processor at its
reset address:

nios2-download –g –r

4.1.2.2 elf2flash, bin2flash, and sof2flash

These three commands are often used with the nios2-flash-programmer
command. The resulting .flash file is a standard .srec file.

The following two important command-line options are available for the elf2flash
command:

• The -boot=<boot copier file>.srec option directs the elf2flash command
to prepend a bootloader S-record file to the converted ELF file.

• The -after=<flash file>.flash option places the generated .flash file—the
converted ELF file—immediately following the specified .flash file in flash memory.

The -after option is commonly used to place the .elf file immediately following
the .sof in an erasable, programmable, configurable serial EPCS or EPCQ flash device.

Caution: If you use an EPCS or EPCQ device, you must program the hardware image in the
device before you program the software image. If you disregard this rule your
software image will be corrupted.

Before it writes to any flash device, the Nios II flash programmer erases the entire
sector to which it expects to write. In EPCS and EPCQ devices, however, if you
generate the software image using the elf2flash -after option, the Nios II flash
programmer places the software image directly following the hardware image, not on
the next flash sector boundary. Therefore, in this case, the Nios II flash programmer
does not erase the current sector before placing the software image. However, it does
erase the current sector before placing the hardware image.

When you use the flash programmer through the Nios II SBT, you automatically create
a script that contains some of these commands. Running the flash programmer
creates a shell script (.sh) in the Debug or Release target directory of your project.
This script contains the detailed command steps you used to program your flash
memory.

Example 5. Sample Auto-Generated Script:

#!/bin/sh
#
# This file was automatically generated by the Nios II SBT For Eclipse.
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#
# It will be overwritten when the flash programmer options change.
#

cd <full path to your project>/Debug

# Creating .flash file for the FPGA configuration
#"<Nios II EDS install path>/bin/sof2flash" --offset=0x400000 \
    --input="full path to your SOF" \
    --output="<your design>.flash"

# Programming flash with the FPGA configuration
#"<Nios II EDS install path>/bin/nios2-flash-programmer" --base=0x00000000 \
    --sidp=0x00810828 --id=1436046714 \
    --timestamp=1169569475 --instance=0 "<your design>.flash"
#
# Creating .flash file for the project
"<Nios II EDS install path>/bin/elf2flash" --base=0x00000000 --end=0x7fffff \
    --reset=0x0 \
    --input="<your project name>.elf" --output="ext_flash.flash" \
    --boot="<path to the bootloader>/boot_loader_cfi.srec"

# Programming flash with the project
"<Nios II EDS install path>/bin/nios2-flash-programmer" --base=0x00000000 \
    --sidp=0x00810828 --id=1436046714 \
    --timestamp=1169569475 --instance=0 "ext_flash.flash"

# Creating .flash file for the read only zip file system
"<Nios II EDS install path>/bin/bin2flash" --base=0x00000000 --location=0x100000\
    --input="<full path to your binary file>" --output="<filename>.flash"

# Programming flash with the read only zip file system
"<Nios II EDS install path>/bin/nios2-flash-programmer" --base=0x00000000 \
    --sidp=0x00810828 --id=1436046714 \
    --timestamp=1169569475 --instance=0 "<filename>.flash"

The paths, file names, and addresses in the auto-generated script change depending
on the names and locations of the files that are converted and on the configuration of
your hardware design.

4.1.2.2.1 bin2flash Usage Example

To program an arbitrary binary file to flash memory, perform the following steps:

1. Type the following command to generate your .flash file:

bin2flash --location=<offset from the base address> \ 
    -input=<your file> --output=<your file>.flash

2. Type the following command to program your newly created file to flash memory:

nios2-flash-programmer -base=<base address> <your file>.flash

4.1.3 Intel Command-Line Tools for Software Development and Debug

This section describes Intel command-line tools that are useful for software
development and debugging.
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4.1.3.1 nios2-terminal

This command establishes contact with stdin, stdout, and stderr in a Nios II
processor subsystem. stdin, stdout, and stderr are routed through a UART (standard
UART or JTAG UART) module within this system.

The nios2-terminal command allows you to monitor stdout, stderr, or both, and
to provide input to a Nios II processor subsystem through stdin. This command
behaves the same as the nios2-configure-sof command described in nios2-
configure-sof on page 120 with respect to JTAG cables and devices. However, because
multiple JTAG UART modules may exist in your system, the nios2-terminal
command requires explicit direction to apply to the correct JTAG UART module
instance. Specify the instance using the -instance command-line option. The first
instance in your design is 0 (-instance "0"). Additional instances are numbered
incrementally, starting at 1 (-instance "1").

4.1.3.2 nios2-download

This command parses Nios II .elf files, downloads them to a functioning Nios II
processor, and optionally runs the .elf file.

As for other commands, you can obtain command-line option information with the --
help option. The nios2-download command has the same options as the nios2-
terminal command for dealing with multiple JTAG cables and Nios II processor
subsystems.

4.1.3.2.1 nios2-download Usage Example

To download (and run) a Nios II .elf program:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located. If you use the Nios II SBT
for development, the correct location is often the Debug or Release subdirectory
of your top-level project.If you use the Nios II SBT, the correct location is the app
folder.

3. In the command shell, type the following command to download and start your
program:

nios2-download -g <project name>.elf

4. Optionally, use the nios2-terminal command to connect to view any output or
provide any input to the running program.

4.1.3.3 nios2-stackreport

This command returns a brief report on the amount of memory still available for stack
and heap from your project's .elf file.

This command does not help you to determine the amount of stack or heap space
your code consumes during runtime, but it does tell you how much space your code
has to work in.

4 Software System Design with a Nios II Processor

Embedded Design Handbook
124



Example 6. nios2-stackreport Command and Response

$ nios2-stackreport <your project>.elf
Info: (<your project>.elf) 6312 KBytes program size (code + initialized data).
Info:                 10070 KBytes free for stack + heap.

4.1.3.3.1 nios2-stackreport Usage Example

To use the nios2-stackreport command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-stackreport <your project>.elf

4.1.3.4 validate_zip

The Nios II EDS uses this command to validate that the files you use for the Read Only
Zip Filing System are uncompressed. You can use it for the same purpose.

4.1.3.4.1 validate_zip Usage Example

To use the validate_zip command, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .zip file is located.

3. In the command shell, type the following command:

validate_zip <file>.zip

If no response appears, your .zip file is not compressed.

4.1.3.5 nios2-gdb-server

This command starts a GNU Debugger (GDB) JTAG conduit that listens on a specified
TCP port for a connection from a GDB client, such as a nios2-elf-gdb client.

Occasionally, you may have to terminate a GDB server session. If you no longer have
access to the Nios II command shell session in which you started a GDB server
session, or if the offending GDB server process results from an errant Nios II SBT
debugger session, you should stop the nios2-gdb-server.exe process on Windows
platforms, or type the following command on Linux platforms:

pkill -9 -f nios2-gdb-server

4.1.3.5.1 nios2-gdb-server Usage Example

The Nios II SBT for Eclipse and most of the other available debuggers use the nios2-
gdb-server and nios2-elf-gdb commands for debugging. You should never have
to use these tools at this low level. However, in case you prefer to do so, this section
includes instructions to start a GDB debugger session using these commands, and an
example GDB debugging session.
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You can perform the following steps to start a GDB debugger session:

1. Open a Nios II command shell.

2. In the command shell, type the following command to start the GDB server on the
machine that is connected through a JTAG interface to the Nios II system you wish
to debug:

nios2-gdb-server --tcpport 2342 --tcppersist

If the transfer control protocol port 2342 is already in use, use a different port.

Following is the system response:

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Listening on port 2342 for connection from GDB:

Now you can connect to your server (locally or remotely) and start debugging.

3. Type the following command to start a GDB client that targets your .elf file:

nios2-elf-gdb <file>.elf

Example 7. Sample Debugging Session

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin --target=nios2-elf"...
(gdb) target remote <your_host>:2342
Remote debugging using <your_host>:2342
OS_TaskIdle (p_arg=0x0) at sys/alt_irq.h:127
127 {
(gdb) load
Loading section .exceptions, size 0x1b0 lma 0x1000020
Loading section .text, size 0x3e4f4 lma 0x10001d0
Loading section .rodata, size 0x4328 lma 0x103e6c4
Loading section .rwdata, size 0x2020 lma 0x10429ec
Start address 0x10001d0, load size 281068
Transfer rate: 562136 bits/sec, 510 bytes/write.
(gdb) step
.
.
.
(gdb) quit

Possible commands include the standard debugger commands load, step,
continue, run, and quit. Press Ctrl+c to terminate your GDB server session.

4.1.4 Intel Command-Line Nios II Software Build Tools

The Nios II software build tools are command-line utilities available from a Nios II
command shell that enable you to create application, board support package (BSP),
and library software for a particular Nios II hardware system. Use these tools to create
a portable, self-contained makefile-based project that can be easily modified later to
suit your build flow.
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Unlike the Nios II SBT-based flow, proficient use of these tools requires some
expertise with the GNU make-based software build flow. Before you use these tools,
refer to the Nios II Software Build Tools and the Nios II Software Build Tools Reference
chapters of the Nios II Software Developer's Handbook.

The following sections summarize the commands available for generating a BSP for
your hardware design and for generating your application software. Many additional
options are available in the Nios II software build tools. For an overview of the tools
summarized in this section, refer to the Nios II Software Build Tools chapter of the
Nios II Software Developer's Handbook.

Related Links

• Nios II Software Build Tools

• Nios II Software Build Tools Reference

• Developing Nios II Software on page 137

4.1.4.1 BSP Related Tools

Use the following command-line tools to create a BSP for your hardware design:

• nios2-bsp-create-settings creates a BSP settings file.

• nios2-bsp-update-settings updates a BSP settings file.

• nios2-bsp-query-settings queries an existing BSP settings file.

• nios2-bsp-generate-files generates all the files related to a given BSP
settings file.

• nios2-bsp is a script that includes most of the functionality of the preceding
commands.

• create-this-bsp is a high-level script that creates a BSP for a specific
hardware design example.

4.1.4.2 Application Related Tools

Use the following commands to create and manipulate Nios II application and library
projects:

• nios2-app-generate-makefile creates a makefile for your application.

• nios2-lib-generate-makefile creates a makefile for your application library.

• create-this-app is a high-level script that creates an application for a specific
hardware design example.

4.1.5 Rebuilding Software from the Command Line

Rebuilding software after minor source code edits does not require a GUI. You can
rebuild the project from a Nios II Command Shell, using your application's makefile.
To build or rebuild your software, perform the following steps:

1. Open a Nios II Command Shell by executing one of the following steps, depending
on your environment:
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• In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS, and click Nios II Command Shell.

• In the Linux operating system, in a command shell, type the following
sequence of commands:

cd <Nios II EDS install path>
./nios2_command_shell.sh

2. Change to the directory in which your makefile is located. If you use the Nios II
SBT for development, the correct location is often the Debug or Release
subdirectory of your software project directory.

3. In the Command Shell, type one of the following commands:

make

or

make -s

The example below illustrates the output of the make command run on a sample
system.

Example 8. Sample Output From make -s Command

$ make -s
Creating generated_app.mk...
Creating generated_all.mk...
Creating system.h...
Creating alt_sys_init.c...
Creating generated.sh...
Creating generated.gdb...
Creating generated.x...
Compiling src1.c...
Compiling src2.c...
Compiling src3.c...
Compiling src4.c...
Compiling src5.c...
Linking project_name.elf...

If you add new files to your project or make significant hardware changes, recreate
the project with the original tool (the Nios II SBT). Recreating the project recreates
the makefile for the new version of your system after the modifications.

4.1.6 GNU Command-Line Tools

The Nios II GCC toolchain contains the GNU Compiler Collection, the GNU binutils, and
the newlib C library. You can follow links to detailed documentation from the Nios II
EDS documentation launchpad found in your Nios II EDS distribution. To start the
launchpad on Windows platforms, on the Start menu, click All Programs. On the All
Programs menu, on the Altera submenu, on the Nios II EDS <version> submenu, click
Literature. On Linux platforms, open <Nios II EDS install dir>/documents/
index.htm in a web browser. In addition, more information about the GNU GCC
toolchain is available on the online.
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4.1.6.1 nios2-elf-addr2line

This command returns a source code line number for a specific memory address. The
command is similar to but more specific than the nios2-elf-objdump command
described in nios2-elf-objdump on page 135 and the nios2-elf-nm command
described in nios2-elf-nm on page 134.

Use the

nios2-elf-addr2line

command to help validate code that should be stored at specific memory addresses.
The example below illustrates its usage and results:

Example 9. nios2-elf-addr2line Utility Usage Example

$ nios2-elf-addr2line --exe=<your project>.elf 0x1000020
<Nios II EDS install path>/components/altera_nios2/HAL/src/alt_exception_entry.S:
99

4.1.6.1.1 nios2-elf-addr2line Usage Example

To use the nios2-elf-addr2line command, perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-addr2line <your project>.elf <your_address_0>,\ 
<your_address_1>,...,<your_address_n>

If your project file contains source code at this address, its line number appears.

4.1.6.2 nios2-elf-gdb

This command is a GDB client that provides a simple shell interface, with built-in
commands and scripting capability. A typical use of this command is illustrated in the
section nios2-gdb-server on page 125.

4.1.6.3 nios2-elf-readelf

Use this command to parse information from your project's .elf file. The command is
useful when used with grep, sed, or awk to extract specific information from
your .elf file.

4.1.6.3.1 nios2-elf-readelf Usage Example

To display information about all instances of a specific function name in your .elf file,
perform the following steps:

1. Open a Nios II command shell.

2. In the command shell, type the following command:

nios2-elf-readelf -symbols <project>.elf | grep <function name>

4 Software System Design with a Nios II Processor

Embedded Design Handbook
129



Example 10. Search for the http_read_line Function Using nios2-elf-readelf

$ nios2-elf-readelf.exe –s my_file.elf | grep http_read_line
1106: 01001168 160 FUNC GLOBAL DEFAULT 3 http_read_line

Table 18. Interpretation of nios2-elf-readelf Command Response

Value Description

1106 Symbol instance number

0100168 Memory address, in hexadecimal format

160 Size of this symbol, in bytes

FUNC Type of this symbol (function)

GLOBAL Binding (values: GLOBAL, LOCAL, and WEAK)

DEFAULT Visibility (values: DEFAULT, INTERNAL, HIDDEN, and PROTECTED)

3 Index

http_read_line Symbol name

You can obtain further information about the ELF file format online. Each of the ELF
utilities has its own main page.

4.1.6.4 nios2-elf-ar

This command generates an archive (.a) file containing a library of object (.o) files.
The Nios II SBT uses this command to archive the System Library project.

4.1.6.4.1 nios2-elf-ar Usage Example

To archive your object files using the nios2-elf-ar command, perform the following
steps:

1. Open a Nios II command shell.

2. Change to the directory in which your object files are located.

3. In the command shell, type the following command:

nios2-elf-ar q <archive_name>.a <object files>

The example shows how to create an archive of all of the object files in your current
directory. In the example, the q option directs the command to append each object file
it finds to the end of the archive. After the archive file is created, it can be distributed
for others to use, and included as an argument in linker commands, in place of a long
object file list.

Example 11. nios2-elf-ar Command Response

$ nios2-elf-ar q <archive_name>.a *.o
nios2-elf-ar: creating <archive_name>.a
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4.1.6.5 Linker

Use the nios2-elf-g++ command to link your object files and archives into the final
executable format, ELF.

4.1.6.5.1 Linker Usage Example

To link your object files and archives into a .elf file, open a Nios II command shell and
call nios2-elf-g++ with appropriate arguments. The following example command
line calls the linker:

nios2-elf-g++ -T'<linker script>' -msys-crt0='<crt0.o file>' \
-msys-lib=<system library> -L '<The path where your libraries reside>' \
-DALT_DEBUG -O0 -g -Wall -mhw-mul -mhw-mulx -mno-hw-div \
-o <your project>.elf <object files> -lm

The exact linker command line to link your executable may differ. When you build a
project in the Nios II SBT, you can see the command line used to link your application.
To turn on this option in the Nios II SBT, on the Window menu, click Preferences,
select the Nios II tab, and enable Show command lines when running make. You
can also force the command lines to display by running make without the -s option
from a Nios II command shell.

Note: Intel recommends that you not use the native linker nios2-elf-ld to link your
programs. For the Nios II processor, as for all softcore processors, the linking flow is
complex. The g++ (nios2-elf-g++) command options simplify this flow. Most of
the options are specified by the -m command-line option, but the options available
depend on the processor choices you make.

4.1.6.6 nios2-elf-size

This command displays the total size of your program and its basic code sections.

4.1.6.6.1 nios2-elf-size Usage Example

To display the size information for your program, perform the following steps:

1. Open a Nios II command shell.

2. Change to the directory in which your .elf file is located.

3. In the command shell, type the following command:

nios2-elf-size <project>.elf

Example 12. nios2-elf-size Command Usage

$ nios2-elf-size my_project.elf
text data bss dec hex filename
272904 8224 6183420 6464548 62a424 my_project.elf

4.1.6.7 nios2-elf-strings

This command displays all the strings in a .elf file.
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4.1.6.7.1 nios2-elf-strings Usage Example

The command has a single required argument:

nios2-elf-strings <project>.elf

4.1.6.8 nios2-elf-strip

This command strips all symbols from object files. All object files are supported,
including ELF files, object files (.o) and archive files (.a).

4.1.6.8.1 nios2-elf-strip Usage Example

nios2-elf-strip <options> <project>.elf

4.1.6.8.2 nios2-elf-strip Usage Notes

The nios2-elf-strip command decreases the size of the .elf file.

This command is useful only if the Nios II processor is running an operating system
that supports ELF natively.If ELF is the native executable format, the entire .elf file is
stored in memory, and the size savings matter.If not, the file is parsed and the
instructions and data stored directly in memory, without the symbols in any case.

Linux is one operating system that supports ELF natively; uClinux is another. uClinux
uses the flat (FLT) executable format, which is translated directly from the ELF.

4.1.6.9 nios2-elf-gdbtui

This command starts a GDB session in which a terminal displays source code next to
the typical GDB console.

The syntax for the nios2-elf-gdbtui command is identical to that for the nios2-
elf-gdb command described in nios2-elf-gdb on page 129.

Two additional GDB user interfaces are available for use with the Nios II GDB
Debugger. CGDB, a cursor-based GDB UI, is available at sourceforge.net. The Data
Display Debugger (DDD) is highly recommended.

Related Links

www.sourceforge.net

4.1.6.10 nios2-elf-gprof

This command allows you to profile your Nios II system.

For details about this command and the Nios II EDS-based results GUI, refer to AN
391: Profiling Nios II Systems.

Related Links

AN391: Profiling Nios II Systems

4 Software System Design with a Nios II Processor

Embedded Design Handbook
132

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an391.pdf


4.1.6.11 nios2-elf-gcc and g++

These commands run the GNU C and C++ compiler, respectively, for the Nios II
processor.

4.1.6.11.1 Compilation Command Usage Example

The following simple example shows a command line that runs the GNU C or C++
compiler:

nios2-elf-gcc(g++) <options> -o <object files> <C files>

4.1.6.11.2 More Complex Compilation Example

The example below is a Nios II EDS-generated command line that compiles C code in
multiple files in many directories.

Example 13. Example nios2-elf-gcc Command Line

nios2-elf-gcc -xc -MD -c \
-DSYSTEM_BUS_WIDTH=32 -DALT_NO_C_PLUS_PLUS -DALT_NO_INSTRUCTION_EMULATION \
-DALT_USE_SMALL_DRIVERS -DALT_USE_DIRECT_DRIVERS -DALT_PROVIDE_GMON \
-I.. -I/cygdrive/c/Work/Projects/demo_reg32/Designs/std_2s60_ES/software/\
reg_32_example_0_syslib/Release/system_description \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_timer/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_jtag_uart/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_pio/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_lcd_16207/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/HAL/inc \
-I/cygdrive/c/altera/70_b31/ip/sopc_builder_ip/altera_avalon_sysid/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_nios2/HAL/inc \
-I/cygdrive/c/altera/70_b31/nios2eds/components/altera_hal/HAL/inc \
-DALT_SINGLE_THREADED -D__hal__ -pipe -DALT_RELEASE -O2 -g -Wall\
-mhw-mul -mhw-mulx -mno-hw-div -o obj/reg_32_buttons.o ../reg_32_buttons.c

4.1.6.12 nios2-elf-c++filt

This command demangles C++ mangled names. C++ allows multiple functions to
have the same name if their parameter lists differ; to keep track of each unique
function, the compiler mangles, or decorates, function names. Each compiler mangles
functions in a particular way.

For a full explanation, including more details about how the different compilers mangle
C++ function names, refer to standard reference sources for the C++ language
compilers.

4.1.6.12.1 nios2-elf-c++filt Usage Example

To display the original, demangled function name that corresponds to a particular
symbol name, you can type the following command:

nios2-elf-c++filt -n <symbol name>
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For example,

nios2-elf-c++filt -n _Z11my_functionv

4.1.6.12.2 More Complex nios2-elf-c++filt Example

The following example command line causes the display of all demangled function
names in an entire file:

nios2-elf-strings <file>.elf | grep ^_Z | nios2-elf-c++filt -n

In this example, the nios2-elf-strings operation outputs all strings in the .elf
file. This output is piped to a grep operation that identifies all strings beginning with
_Z. (GCC always prepends mangled function names with _Z). The output of the grep
command is piped to a nios2-elf-c++filt command. The result is a list of all
demangled functions in a GCC C++ .elf file.

4.1.6.13 nios2-elf-nm

This command list the symbols in a .elf file.

4.1.6.13.1 nios2-elf-nm Usage Example

The following two simple examples illustrate the use of the nios2-elf-nm command:

• nios2-elf-nm <project>.elf

• nios2-elf-nm <project>.elf | sort -n

4.1.6.13.2 More Complex nios2-elf-nm Example

To generate a list of symbols from your .elf file in ascending address order, use the
following command:

nios2-elf-nm <project>.elf | sort -n > <project>.elf.nm

The <project>.elf.nm file contains all of the symbols in your executable file, listed in
ascending address order. In this example, the nios2-elf-nm command creates the
symbol list. In this text list, each symbol’s address is the first field in a new line. The -
n option for the sort command specifies that the symbols be sorted by address in
numerical order instead of the default alphabetical order.

4.1.6.14 nios2-elf-objcopy

Use this command to copy from one binary object format to another, optionally
changing the binary data in the process.

Though typical usage converts from or to ELF files, the objcopy command is not
restricted to conversions from or to ELF files. You can use this command to convert
from, and to, any of the formats listed in the table below.
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Table 19. -objcopy Binary Formats

Command (...-objcopy) Comments

elf32-littlenios2, elf32-little Header little endian, data little endian, the default and most
commonly used format

elf32-bignios2, elf32-big Header big endian, data big endian

srec S-Record (SREC) output format

symbolsrec SREC format with all symbols listed in the file header,
preceding the SREC data

tekhex Tektronix hexadecimal (TekHex) format

binary Raw binary format Useful for creating binary images for
storage in flash on your embedded system

ihex Intel hexadecimal (ihex) format

You can obtain information about the TekHex, ihex, and other text-based binary
representation file formats online. As of the initial publication of this handbook, you
can refer to the sbprojects.com knowledge-base entry on file formats.

Related Links

www.sbprojects.com

4.1.6.14.1 nios2-elf-objcopy Usage Example

To create an SREC file from an ELF file, use the following command:

nios2-elf-objcopy –O srec <project>.elf <project>.srec

ELF is the assumed binary format if none is listed. For information about how to
specify a different binary format, in a Nios II command shell, type the following
command:

nios2-elf-objcopy --help

4.1.6.15 nios2-elf-objdump

Use this command to display information about the object file, usually an ELF file.

The nios2-elf-objdump command supports all of the binary formats that the
nios2- elf-objcopy command supports, but ELF is the only format that produces
useful output for all command-line options.

4.1.6.15.1 nios2-elf-objdump Usage Description

The Nios II EDS uses the following command line to generate object dump files:

nios2-elf-objdump -D -S -x <project>.elf > <project>.elf.objdump
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4.1.6.16 nios2-elf-ranlib

Calling nios2-elf-ranlib is equivalent to calling nios2-elf-ar with the -s
option (nios2-elf-ar -s).

For further information about this command, refer to nios2-elf-ar on page 130 or type
nios2-elf-ar --help in a Nios II command shell.
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4.2 Developing Nios II Software

This section provides in-depth information about software development for the Intel
Nios II processor. It complements the Nios II Gen2 Software Developer’s Handbook by
providing the following additional information:

• Recommended design practices—Best practice information for Nios II software
design, development, and deployment.

• Implementation information—Additional in-depth information about the
implementation of application programming interfaces (APIs) and source code for
each topic, if available.

• Pointers to topics—Informative background and resource information for each
topic, if available.

Before reading this section, you should be familiar with the process of creating a
simple board support package (BSP) and an application project using the Nios II
Software Build Tools development flow. The Software Build Tools flow is supported by
Nios II Software Build Tools for Eclipse™ as well as the Nios II Command Shell. This
section focuses on the Nios II Software Build Tools for Eclipse, but most information is
also applicable to project development in the Command Shell.

The following resources provide training on the Nios II SW Build Tools development
flow:

• Online training demonstrations located on the Embedded Software Designer
Curriculum page of the Intel website.

• Documentation located on the Documentation: Nios II Processor page of the Intel
website, especially the "Getting Started from the Command Line" and "Getting
Started with the Graphical User Interface" chapters of the Nios II Gen2 Software
Developer's Handbook.

• Example designs provided with the Nios II Embedded Design Suite (EDS). The
online training demonstrations describe these software design examples, which
you can use as-is or as the basis for your own more complex designs.

This section is structured according to the Nios II software development process. Each
section describes Intel’s recommended design practices to accomplish a specific task.

When you install the Nios II EDS, it is installed in the same directory with the Quartus
Prime software. For example, if the Quartus Prime software is installed on the
Windows operating system, and the root directory of the Quartus Prime software is c:
\altera\<version>\quartus, then the root directory of the Nios II EDS is c:
\altera\<version>\nios2eds. For simplicity, this handbook refers to the
nios2eds directory as:

<Nios II EDS install dir>

Related Links

• Nios II Gen2 Software Developer's Handbook

• Embedded SW Designer Curriculum

• Documentation: Nios II Processor
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4.2.1 Software Development Cycle

The Nios II EDS includes a complete set of C/C++ software development tools for the
Nios II processor. In addition, a set of third-party embedded software tools is provided
with the Nios II EDS. This set includes the MicroC/OS-II real-time operating system
and the NicheStack TCP/IP networking stack. This section focuses on the use of the
Intel-created tools for Nios II software generation. It also includes some discussion of
third-party tools.

The Nios II EDS is a collection of software generation, management, and deployment
tools for the Nios II processor. The toolchain includes tools that perform low-level
tasks and tools that perform higher-level tasks using the lower-level tools. For more
information on Linux, refer to rocketboards.org.

Related Links

• Intel System on a Programmable Chip (Qsys) Solutions on page 18

• Nios II Software Development Process on page 140

• rocketboards.org

4.2.1.1 Nios II Software Design

This section contains brief descriptions of the software design tools provided by the
Nios II EDS, including the Nios II SBT development flow.

4.2.1.1.1 Nios II Tools Overview

The Nios II EDS provides the following tools for software development:

• GNU toolchain: GCC-based compiler with the GNU binary utilities

Note: For an overview of these and other Intel-provided utilities, refer to the "Nios
II Command-Line Tools" chapter of this handbook.

• Nios II processor-specific port of the newlib C library

• Hardware abstraction layer (HAL)

The HAL provides a simple device driver interface for programs to communicate
with the underlying hardware. It provides many useful features such as a POSIX-
like application program interface (API) and a virtual-device file system.

For more information about the Intel HAL, refer to The Hardware Abstraction Layer
section of the Nios II Gen2 Software Developer’s Handbook.

• Nios II SBT

The Nios II SBT development flow is a scriptable development flow. It includes the
following user interfaces:

— The Nios II SBT for Eclipse—a GUI that supports creating, modifying, building,
running, and debugging Nios II programs. It is based on the Eclipse open
development platform and Eclipse C/C++ development toolkit (CDT) plug-ins.

— The Nios II SBT command-line interface—From this interface, you can execute
SBT command utilities, and use scripts (or other tools) to combine the
command utilities in many useful ways.

For more information about the Nios II SBT flow, refer to the Developing Nios
II Software chapter of this handbook.
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Figure 32. Nios II Software Development Flows: Developing Software
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Intel recommends that you view and begin your design with one of the available
software examples that are installed with the Nios II EDS. From simple “Hello, World”
programs to networking and RTOS-based software, these examples provide good
reference points and starting points for your own software development projects. The
Hello World Small example program illustrates how to reduce your code size without
losing all of the conveniences of the HAL.

Note: Intel recommends that you use an Intel development kit or custom prototype board
for software development and debugging. Many peripheral and system-level features
are available only when your software runs on an actual board.

Related Links

• Nios II Command-Line Tools on page 118

• The Hardware Abstraction Layer

• Developing Nios II Software on page 137

4.2.1.1.2 Nios II Software Build Tools

The Nios II SBT flow uses the Software Build Tools to provide a flexible, portable, and
scriptable software build environment. Intel recommends that you use this flow. The
SBT includes a command-line environment and fits easily in your preferred software or
system development environment.
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The SBT flow requires that you have a .sopcinfo file for your system. The flow
includes the following steps to create software for your system:

1. Create a board support package (BSP) for your system. The BSP is a layer of
software that interacts with your development system. It is a makefile-based
project.

2. Create your application software:

a. Write your code.

b. Generate a makefile-based project that contains your code.

3. Iterate through one or both of these steps until your design is complete.

For more information, refer to the software example designs that are shipped with
every release of the Nios II EDS. For more information about these examples, refer to
one of the following sections:

• “Getting Started” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer’s Handbook.

• “Nios II Example Design Scripts” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Links

• Getting Started with the Graphical User Interface

• Nios II Software Build Tools Reference

4.2.1.2 Nios II Software Development Process

This section provides an overview of the Nios II software development process and
introduces terminology. The rest of the chapter elaborates the description in this
section.

The Nios II software generation process includes the following stages and main
hardware configuration tools:

1. Hardware configuration

• Qsys

• Quartus Prime software

2. Software project management

• BSP configuration

• Application project configuration

• Editing and building the software project

• Running, debugging, and communicating with the target

• Ensuring hardware and software coherency

• Project management

3. Software project development
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• Developing with the Hardware Abstraction Layer (HAL)

• Programming the Nios II processor to access memory

• Writing exception handlers

• Optimizing the application for performance and size

• Real-time operating system (RTOS) support

4. Application deployment

• Linking (run-time memory)

• Boot loading the system application

• Programming flash memory

In this list of stages and tools, the subtopics under the topics Software project
management, Software project development, and Application deployment correspond
closely to sections in the chapter.

You create the hardware for the system using the Quartus Prime and Qsys software.
The main output produced by generating the hardware for the system is the SRAM
Object File (.sof), which is the hardware image of the system, and the Qsys
Information File (.sopcinfo), which describes the hardware components and
connections.

Note: The key file required to generate the application software is the .sopcinfo file.

The software generation tools use the .sopcinfo file to create a BSP project. The BSP
project is a collection of C source, header and initialization files, and a makefile for
building a custom library for the hardware in the system. This custom library is the
BSP library file (.a). The BSP library file is linked with your application project to
create an executable binary file for your system, called an application image. The
combination of the BSP project and your application project is called the software
project.

The application project is your application C source and header files and a makefile
that you can generate by running Intel-provided tools. You can edit these files and
compile and link them with the BSP library file using the makefile. Your application
sources can reference all resources provided by the BSP library file. The BSP library
file contains services provided by the HAL, which your application sources can
reference. After you build your application image, you can download it to the target
system, and communicate with it through a terminal application.

You can access the makefile in the Eclipse Project Explorer view after you have
created your project in the Nios II Software Build Tools for Eclipse framework.

The software project is flexible: you can regenerate it if the system hardware changes,
or modify it to add or remove functionality, or tune it for your particular system. You
can also modify the BSP library file to include additional Intel-supplied software
packages, such as the read-only zip file system or TCP/IP networking stack (the
NicheStack TCP/IP Stack). Both the BSP library file and the application project can be
configured to build with different parameters, such as compiler optimizations and
linker settings.

If you change the hardware system, you must recreate, update or regenerate the BSP
project to keep the library header files up-to-date.
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For information about how to keep your BSP up-to-date with your hardware, refer to
“Revising Your BSP” in the Nios II Software Build Tools chapter of the Nios II Gen2
Software Developer's Handbook.

Related Links

Revising Your BSP

4.2.2 Software Project Mechanics

This section describes the recommended ways to edit, build, download, run, and
debug your software application, primarily using the Nios II Software Build Tools for
Eclipse.

The Nios II Software Build Tools flow is the recommended design flow for hardware
designs that contain a Nios II processor. This section describes how to configure BSP
and application projects, and the process of developing a software project for a
system that contains a Nios II processor, including ensuring coherency between the
software and hardware designs.

4.2.2.1 Software Tools Background

The Nios II EDS provides a sophisticated set of software project generation tools to
build your application image. The Nios II Software Build Tools flow is available for
project creation. The Nios II Software Build Tools flow includes the Software Build
Tools command-line interface and the Nios II Software Build Tools for Eclipse.

The Nios II Software Build Tools for Eclipse is the recommended flow. The Nios II
Software Build Tools for Eclipse does not support the following Nios II Integrated
Development Environment (IDE) feature:

• stdio output to an RS-232 UART cannot display on the System Console. To
display stdio output on the System Console, configure your BSP to use a JTAG
UART peripheral for stdout, using the hal.stdout BSP setting. If no JTAG UART
is available in your hardware system, you can run nios2-terminal in a separate
Nios II Command Shell to capture stdio output.

Intel recommends that you use the Nios II Software Build Tools for Eclipse to create
new software projects. The Nios II Software Build Tools are the basis for Intel’s future
development.

A graphical user interface for configuring BSP libraries, called the Nios II BSP Editor, is
also available. The BSP Editor is integrated with the Nios II Software Build Tools for
Eclipse, and can also be used independently.
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4.2.2.2 Development Flow Guidelines

The Nios II Software Build Tools flow provides many services and functions for your
use. Until you become familiar with these services and functions, Intel recommends
that you adhere to the following guidelines to simplify your development effort:

• Begin with a known hardware design—The All Design Examples page of the
Intel website includes a set of known working designs, called hardware example
designs, which are excellent starting points for your own design. In addition, the
Nios II Hardware Development Tutorial walks through some example designs.

• Begin with a known software example design—The Nios II EDS includes a set
of preconfigured application projects for you to use as the starting point of your
own application. Use one of these designs and parameterize it to suit your
application goals.

• Follow pointers to documentation—Many of the application and BSP project
source files include inline comments that provide additional information.

• Make incremental changes—Regardless of your end-application goals, develop
your software application by making incremental, testable changes, to
compartmentalize your software development process. Intel recommends that you
use a version control system to maintain distinct versions of your source files as
you develop your project.

Related Links

• All Design Examples

• Nios II Hardware Development Tutorial

4.2.2.3 Nios II Software Build Tools

The Nios II Software Build Tools are a collection of command-line utilities and scripts.
These tools allow you to build a BSP project and an application project to create an
application image. The BSP project is a parameterizable library, customized for the
hardware capabilities and peripherals in your system. When you create a BSP library
file from the BSP project, you create it with a specific set of parameter values. The
application project consists of your application source files and the application
makefile. The source files can reference services provided by the BSP library file.

For the full list of utilities and scripts in the Nios II Software Build Tools flow, refer to
“Intel-Provided Embedded Development Tools” in the Nios II Software Build Tools
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

Nios II Software Build Tools

4.2.2.3.1 The Nios II Software Build Tools for Eclipse

The Nios II Software Build Tools for Eclipse provide a consistent development platform
that works for all Nios II processor systems. You can accomplish most software
development tasks in the Nios II Software Build Tools for Eclipse, including creating,
editing, building, running, debugging, and profiling programs.

The Nios II Software Build Tools for Eclipse are based on the popular Eclipse
framework and the Eclipse C/C++ development toolkit (CDT) plug-ins. Simply put, the
Nios II Software Build Tools for Eclipse provides a GUI that runs the Nios II Software
Build Tools utilities and scripts behind the scenes.
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For detailed information about the Nios II Software Build Tools for Eclipse, refer to the
Getting Started with the Graphical User Interface chapter of the Nios II Gen2 Software
Developer's Handbook. For details about Eclipse, visit the Eclipse Foundation website.

Related Links

• Getting Started with the Graphical User Interface

• www.eclipse.com

4.2.2.3.2 The Nios II Software Build Tools Command Line

In the Nios II Software Build Tools command line development flow, you create,
modify, build, and run Nios II programs with Nios II Software Build Tools commands
typed at a command line or embedded in a script.

To debug your program, import your Software Build Tools projects to Eclipse. You can
further edit, rebuild, run, and debug your imported project in Eclipse.

For further information about the Nios II Software Build Tools and the Nios II
Command Shell, refer to the "Getting Started from the Command Line" chapter of the
Nios II Gen2 Software Developer's Handbook.

Related Links

Getting Started from the Command Line

4.2.2.4 Configuring BSP and Application Projects

This section describes some methods for configuring the BSP and application projects
that comprise your software application, while encouraging you to begin your software
development with a software example design.

For information about using version control, copying, moving and renaming a BSP
project, and transferring a BSP project to another person, refer to “Common BSP
Tasks” in the Nios II Software Build Tools chapter of the Nios Gen2 II Software
Developer's Handbook.

Related Links

Nios II Software Build Tools

4.2.2.4.1 Software Example Designs

The best way to become acquainted with the Nios II Software Build Tools flow and
begin developing software for the Nios II processor is to use one of the pre-existing
software example designs that are provided with the Nios II EDS. The software
example designs are preconfigured software applications that you can use as the basis
for your own software development. The software examples can be found in the Nios
II installation directory.

For more information about the software example designs provided in the Nios II EDS,
refer to “Nios II Embedded Design Examples” in the Overview of Nios II Embedded
Development chapter of the Nios II Gen2 Software Developer’s Handbook.

To use a software example design, follow these steps:

1. Set up a working directory that contains your system hardware, including the
system .sopcinfo file.
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Note: Ensure that you have compiled the system hardware with the Quartus Prime
software to create up-to-date .sof and .sopcinfo files.

2. Start the Nios II Software Build Tools for Eclipse as follows:

• In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS <version>, and click Nios II <version> Software
Build Tools for Eclipse.

• In the Linux operating system, in a command shell, type eclipse-nios2.

3. Right-click anywhere in the Project Explorer view, point to New and click Nios
II Application and BSP from Template.

4. Select an appropriate software example from the Templates list.

Note: You must ensure that your system hardware satisfies the requirements for
the software example design listed under Template description. If you
use an Intel Nios II development kit, the software example designs supplied
with the kit are guaranteed to work with the hardware examples included
with the kit.

5. Next to Information File Name, browse to your working directory and select
the .sopcinfo file associated with your system.

6. In a multiprocessor design, you must select the processor on which to run the
software project.

Note: If your design contains a single Nios II processor, the processor name is
automatically filled in.

7. Fill in the project name.

8. Click Next.

9. Select Create a new BSP project based on the application project template.

10. Click Finish. The Nios II Software Build Tools generate an Intel HAL BSP for you.

If you do not want the Software Build Tools for Eclipse to automatically create a BSP
for you, at Step 9, select Select an existing BSP project from your workspace. You
then have several options:

• You can import a pre-existing BSP by clicking Import.

• You can create a HAL or MicroC/OS-II BSP as follows:

— Click Create. The Nios II Board Support Package dialog box appears.

— Next to Operating System, select either Altera HAL or Micrium
MicroC/OS-II.

You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.

Related Links

Overview of Nios II Embedded Development
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4.2.2.4.2 Selecting the Operating System (HAL versus MicroC/OS-II RTOS)

You have a choice of the following run-time environments (operating systems) to
incorporate in your BSP library file:

• The Nios II HAL—A lightweight, POSIX-like, single-threaded library, sufficient for
many applications.

• The MicroC/OS-II RTOS—A real-time, multi-threaded environment. The Nios II
implementation of MicroC/OS-II is based on the HAL, and includes all HAL
services.

After you select HAL or MicroC/OS-II, you cannot change the operating system for this
BSP project.

4.2.2.4.3 Configuring the BSP Project

The BSP project is a configurable library. You can configure your BSP project to
incorporate your optimization preferences—size, speed, or other features—in the
custom library you create. This custom library is the BSP library file (.a) that is used
by the application project.

Creating the BSP project populates the target directory with the BSP library file source
and build file scripts. Some of these files are copied from other directories and are not
overwritten when you recreate the BSP project. Others are generated when you create
the BSP project.

The most basic tool for configuring BSPs is the BSP setting. Throughout this section,
many of the project modifications you can make are based on BSP settings. In each
case, this section presents the names of the relevant settings, and explains how to
select the correct setting value. You can control the value of BSP settings several
ways: on the command line, with a Tcl script, by directly adjusting the settings with
the BSP Editor, or by importing a Tcl script to the BSP Editor.

Another powerful tool for configuring a BSP is the software package. Software
packages add complex capabilities to your BSP. As when you work with BSP settings,
you can add and remove software packages on the command line, with a Tcl script,
directly with the BSP Editor, or by importing a Tcl script to the BSP Editor.

Intel recommends that you use the Nios II BSP Editor to configure your BSP project.
To start the Nios II BSP Editor from the Nios II Software Build Tools for Eclipse, right-
click an existing BSP, point to Nios II, and click BSP Editor.

For detailed information about how to manipulate BSP settings and add and remove
software packages with the BSP Editor, refer to “Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Gen2 Software
Developer's Handbook. This chapter also discusses how to use Tcl scripts in the BSP
Editor.

For information about manipulating BSP settings and controlling software packages at
the command line, refer to “Nios II Software Build Tools Utilities” in the Nios II
Software Build Tools Reference chapter of the Nios II Gen2 Software Developer's
Handbook.

For details about available BSP settings, refer to “Settings Managed by the Software
Build Tools” in the Nios II Software Build Tools Reference chapter of the Nios II Gen2
Software Developer's Handbook.
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For a discussion of Tcl scripting, refer to “Software Build Tools Tcl Commands” in the
Nios II Software Build Tools Reference chapter of the Nios II Gen2 Software
Developer's Handbook.

Note: Do not edit BSP files, because they are overwritten by the Software Build Tools the
next time the BSP is generated.

Related Links

• Nios II Software Build Tools

• Getting Started with the Graphical User Interface

• Nios II Software Build Tools Reference

MicroC/OS-II RTOS Configuration Tips

If you use the MicroC/OS-II RTOS environment, be aware of the following properties of
this environment:

• MicroC/OS-II BSP settings—The MicroC/OS-II RTOS supports many
configuration options. All of these options can be enabled and disabled with BSP
settings. Some of the options are enabled by default. A comprehensive list of BSP
settings for MicroC/OS-II is shown in the Settings tab of the Nios II BSP Editor.

Note: The MicroC/OS-II BSP settings are also described in “Settings Managed by
the Software Build Tools” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer's Handbook.

• MicroC/OS-II setting modification—Modifying the MicroC/OS-II options modifies
the system.h file, which is used to compile the BSP library file.

• MicroC/OS-II initialization—The core MicroC/OS-II RTOS is initialized during the
execution of the C run-time initialization (crt0) code block. After the crt0 code
block runs, the MicroC/OS-II RTOS resources are available for your application to
use. For more information, refer to “crt0 Initialization”.

You can configure MicroC/OS-II with the BSP Editor. Figure 2–1 shows how you enable
the MicroC/OS-II timer and queue code. The figure below shows how you specify a
maximum of four timers for use with MicroC/OS-II.
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Figure 33. Enabling MicroC/OS-II Timers and Queues in BSP Editor

The MicroC/OS-II configuration script in the example below performs the same
MicroC/OS-II configuration as in the figure above and Figure 34 on page 149: it
enables the timer and queue code, and specifies a maximum of four timers.
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Figure 34. Configuring MicroC/OS-II for Four Timers in BSP Editor

Example 14. MicroC/OS-II Tcl Configuration Script Example (ucosii_conf.tcl)

#enable code for UCOSII timers
set_setting ucosii.os_tmr_en 1

#enable a maximum of 4 UCOSII timers
set_setting ucosii.timer.os_tmr_cfg_max 4

#enable code for UCOSII queues
set_setting ucosii.os_q_en 1

Related Links

• Nios II Software Build Tools Reference

• crt0 Initialization on page 163
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HAL Configuration Tips

If you use the HAL environment, be aware of the following properties of this
environment:

• HAL BSP settings—A comprehensive list of options is shown in the Settings tab
in the Nios II BSP Editor. These options include settings to specify a pre- and post-
process to run for each C or C++ file compiled, and for each file assembled or
archived.

Note: For more information about BSP settings, refer to “Settings Managed by the
Software Build Tools” in the Nios II Software Build Tools Reference chapter
of the Nios II Gen2 Software Developer's Handbook.

• HAL setting modification—Modifying the HAL options modifies the system.h file,
which is used to compile the BSP library file.

• HAL initialization—The HAL is initialized during the execution of the C run-time
initialization (crt0) code block. After the crt0 code block runs, the HAL resources
are available for your application to use.For more information, refer to the “crt0
Initialization” section.

You can configure the HAL in the BSP Editor. The figure below shows how you specify a
UART to be used as the stdio device.

The Tcl script in the example performs the same configuration as in the figure: it
specifies a UART to be used as the stdio device.

Figure 35. Configuring HAL stdio Device in BSP Editor
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Example 15. HAL Tcl Configuration Script Example (hal_conf.tcl)

#set up stdio file handles to point to a UART
set default_stdio uart1
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio

Related Links

• Nios II Software Build Tools Reference

• crt0 Initialization on page 163

Adding Software Packages

Intel supplies several add-on software packages in the Nios II EDS. These software
packages are available for your application to use, and can be configured in the BSP
Editor from the Software Packages tab. The Software Packages tab allows you to
insert and remove software packages in your BSP, and control software package
settings. The software package table at the top of this tab lists each available software
package. The table allows you to select the software package version, and enable or
disable the software package.

The operating system determines which software packages are available.

The following software packages are provided with the Nios II EDS:

• Host File System—Allows a Nios II system to access a file system that resides on
the workstation. For more information, refer to “The Host-Based File System”.

• Read-Only Zip File System—Provides access to a simple file system stored in flash
memory. For more information, refer to “Read-Only Zip File System”.

• NicheStack TCP/IP Stack – Nios II Edition—Enables support of the NicheStack
TCP/IP networking stack.

Note: The stack is provided as is but Intel does not offer additional support.

For more information about the NicheStack TCP/IP networking stack, refer to the
Ethernet and the TCP/IP Networking Stack - Nios II Edition chapter of the Nios II Gen2
Software Developer's Handbook.

Related Links

Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

Using Tcl Scripts with the Nios II BSP Editor

The Nios II BSP Editor supports Tcl scripting. Tcl scripting in the Nios II BSP Editor is a
simple but powerful tool that allows you to easily migrate settings from one BSP to
another. This feature is especially useful if you have multiple software projects utilizing
similar BSP settings. Tcl scripts in the BSP editor allow you to perform the following
tasks:

• Regenerate the BSP from the command line

• Export a TCL script from an existing BSP as a starting point for a new BSP

• Recreate the BSP on a different hardware platform

• Examine the Tcl script to improve your understanding of Tcl command usage and
BSP settings

4 Software System Design with a Nios II Processor

Embedded Design Handbook
151

https://documentation.altera.com/#/00075715-NT$NT00075272
https://documentation.altera.com/#/00075715-NT$NT00075426


You can configure a BSP either by importing your own manually-created Tcl script, or
by using a Tcl script exported from the Nios II BSP Editor.

You can apply a Tcl script only at the time that you create the BSP.

Exporting a Tcl Script

To export a Tcl script, follow these steps:

1. Use the Nios II BSP Editor to configure the BSP settings in an existing BSP project.

2. In the Tools menu, click Export Tcl Script.

3. Navigate to the directory where you wish to store your Tcl script.

4. Select a file name for the Tcl script.

When creating a Tcl script, the Nios II BSP Editor only exports settings that differ from
the BSP defaults. For example, if the only nondefault settings in the BSP are those
shown in Configuring HAL stdio Device in BSP Editor, the BSP Editor exports the script
shown in the example below.

Example 16. Tcl Script Exported by BSP Editor

######################################################################
#
# This is a generated Tcl script exported
# by a user of the Altera Nios II BSP Editor.
#
# It can be used with the Altera 'nios2-bsp' shell script '--script'
# option to customize a new or existing BSP.
#
######################################################################
######################################################################
#
# Exported Setting Changes
#
######################################################################
set_setting hal.stdout uart1
set_setting hal.stderr uart1
set_setting hal.stdin uart1

For details about default BSP settings, refer to “Specifying BSP Defaults” in the Nios II
Software Build Tools chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

Nios II Software Build Tools
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Importing a Tcl Script to Create a New BSP

The following example illustrates how to configure a new BSP with an imported Tcl
script. You import the Tcl script with the Nios II BSP Editor, when you create a new
BSP settings file.

In this example, you create the Tcl script by hand, with a text editor. You can also use
a Tcl script exported from another BSP, as described in “Exporting a Tcl Script”.

To configure a new BSP with a Tcl script, follow these steps:

1. With any text editor, create a new file called example.tcl.

2. Insert the contents of the example below in the file.

3. In the Nios II BSP Editor, in the File menu, click New BSP.

4. In the BSP Settings File Name box, select a folder in which to save your new
BSP settings file. Accept the default settings file name, settings.bsp.

5. In the Operating System list, select Altera HAL.

6. In the Additional Tcl script box, navigate to example.tcl.

7. In the Qsys Information File Name box, select the .sopcinfo file.

8. Click OK. The BSP Editor creates the new BSP. The settings modified by
example.tcl appear as in the figure below.

Example 17. Example 2–4. BSP Configuration Tcl Script example.tcl

set_setting hal.enable_reduced_device_drivers true
set_setting hal.enable_sim_optimize true
set_setting hal.enable_small_c_library true
set_setting hal.enable_gprof true

Figure 36. Nios II BSP Settings Configured with example.tcl

Do not attempt to import an Altera HAL Tcl script to a MicroC/OS-II BSP or vice-versa.
Doing so could result in unpredictable behavior, such as lost settings. Some BSP
settings are OS-specific, making scripts from different OSes incompatible.

For more information about commands that can appear in BSP Tcl scripts, refer to
“Software Build Tools Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

• Nios II Software Build Tools Reference
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• Exporting a Tcl Script on page 152

4.2.2.4.4 Configuring the Application Project

You configure the application project by specifying source files and a valid BSP project,
along with other command-line options to the nios2-app-generate-makefile or
nios2-app-update-makefile commands.

Application Configuration Tips

Use the following tips to increase your efficiency in designing your application project:

1. Source file inclusion—To add source files to your project, drag them from a file
browser, such as Windows Explorer, and drop them in the Project Explorer view
in the Nios II Software Build Tools for Eclipse.

From the command line, several options are available for specifying the source
files in your application project. If all your source files are in the same directory,
use the --src-dir command-line option. If all your source files are contained in
a single directory and its subdirectories, use the --src-rdir command-line
option.

2. Makefile variables—When a new project is created in the Nios II Software Build
Tools for Eclipse, a makefile is automatically generated in the software project
directory. You can modify application makefile variables with the Nios II
Application Wizard.

From the command line, set makefile variables with the --set <var> <value>
command-line option during configuration of the application project. The variables
you can set include the pre- and post-processing settings BUILD_PRE_PROCESS
and BUILD_POST_PROCESS to specify commands to be executed before and after
building the application. Examine a generated application makefile to ensure you
understand the current and default settings.

3. Creating top level generation script—From the command line, simplify the
parameterization of your application project by creating a top level shell script to
control the configuration. The create-this-app scripts in the embedded processor
design examples available from the All Design Examples web page are good
models for your configuration script.

Related Links

All Design Examples

Linking User Libraries

You can create and use your own user libraries in the Nios II Software Build Tools. The
Nios II Software Build Tools for Eclipse includes the Nios II Library wizard, which
enables you to create a user library in a GUI environment.

You can also create user libraries in the Nios II Command Shell, as follows:

1. Create the library using the nios2-lib-generate-makefile command. This
command generates a public.mk file.

2. Configure the application project with the new library by running the nios2-app-
generate-makefile command with the --use-lib-dir option. The value for the
option specifies the path to the library's public.mk file.
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4.2.2.4.5 Makefiles and the Nios II Software Build Tools for Eclipse

The Nios II Software Build Tools for Eclipse create and manage the makefiles for Nios
II software projects. When you create a project, the Nios II Software Build Tools
create a makefile based on parameters and settings you select. When you modify
parameters and settings, the Nios II Software Build Tools update the makefile to
match. BSP makefiles are based on the operating system, BSP settings, selected
software packages, and selected drivers.

Nios II BSP makefiles are handled differently from application and user library
makefiles. Nios II application and user library makefiles are based on source files that
you specify directly. The following changes to an application or user library change the
contents of the corresponding makefile:

• Change the application or user library name

• Add or remove source files

• Specify a path to an associated BSP

• Specify a path to an associated user library

• Enable, disable or modify compiler options

For information about BSPs and makefiles, refer to “Makefiles and the Nios II Software
Build Tools for Eclipse” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer's Handbook.

Related Links

Getting Started with the Graphical User Interface

4.2.2.4.6 Building and Running the Software in Nios II Software Build Tools for Eclipse

Building the Project

After you edit the BSP settings and properties, and generate the BSP (including the
makefile), you can build your project. Right-click your project in the Project Explorer
view and click Build Project.

Downloading and Running the Software

To download and run or debug your program, right-click your project in the Project
Explorer view. To run the program, point to Run As and click Nios II Hardware.

Before you run your target application, ensure that your FPGA is configured with the
target hardware image in your .sof file.

Communicating with the Target

The Nios II Software Build Tools for Eclipse provide a console window through which
you can communicate with your system. When you use the Nios II Software Build
Tools for Eclipse to communicate with the target, characters you input are transmitted
to the target line by line. Characters are visible to the target only after you press the
Enter key on your keyboard.
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If you configured your application to use the stdio functions in a UART or JTAG UART
interface, you can use the nios2-terminal application to communicate with your
target subsystem. However, the Nios II Software Build Tools for Eclipse and the nios2-
terminal application handle input characters very differently.

On the command line, you must use the nios2-terminal application to communicate
with your target. To start the application, type the following command: nios2-
terminal

When you use the nios2-terminal application, characters you type in the shell are
transmitted, one by one, to the target.

Software Debugging in Nios II Software Build Tools for Eclipse

This section describes how to debug a Nios II program using the Nios II Software Build
Tools for Eclipse. You can debug a Nios II program on Nios II hardware such as a Nios
development board. To debug a software project, right-click the application project
name, point to Debug As and click Nios II Hardware.

Note: Do not select Local C/C++ Application. Nios II projects can only be run and debugged
with Nios II run configurations.

For more information about using the Nios II Software Build Tools for Eclipse to debug
your application, refer to the Debugging Nios II Designs chapter of the Embedded
Design Handbook.

Related Links

Debugging Nios II Designs on page 236

Run Time Stack Checking

For debugging purposes, it is useful to enable run-time stack checking, using the
hal.enable_runtime_stack_checking BSP setting. When properly used, this setting
enables the debugger to take control if the stack collides with the heap or with
statically allocated data in memory.

For information about how to use run-time stack checking, refer to “Run-Time Analysis
Debug Techniques” and Stack Overflow in the Debugging Nios II Designs chapter. And
"Run Time Stack Checking And Exception Debugging" section in the Getting Started
with Graphical User Interface chapter of the Nios II Gen2 Software Developer's
Handbook.

For more information about this and other BSP configuration settings, refer to
“Settings Managed by the Software Build Tools” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

• Getting Started with the Graphical User Interface

• Nios II Software Build Tools Reference

• Debugging Nios II Designs on page 236
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4.2.2.5 Ensuring Software Project Coherency

In some engineering environments, maintaining coherency between the software and
system hardware projects is difficult. For example, in a mixed team environment in
which a hardware engineering team creates new versions of the hardware,
independent of the software engineering team, the potential for using the incorrect
version of the software on a particular version of the system hardware is high. Such
an error may cause engineers to spend time debugging phantom issues. This section
discusses several design and software architecture practices that can help you avoid
this problem.

4.2.2.5.1 Recommended Development Practice

The safest software development practice for avoiding the software coherency problem
is to follow a strict hardware and software project hierarchy, and to use scripts to
generate your application and BSP projects.

One best practice is to structure your application hierarchy with parallel application
project and BSP project folders. In the recommended directory structure below, a top-
level hardware project folder includes the Quartus Prime project file, the Qsys-
generated files, and the software project folder. The software project folder contains a
subfolder for the application project and a subfolder for the BSP project. The
application project folder contains a create-this-app script, and the BSP project
folder contains a create-this-bsp script.

Figure 37. Recommended Directory Structure

Hardware project folder

<system_name>.sopcinfo

<system_name>.sof

Software project folder

Application project folder

create-this-app

clean-this-app

application software source files

BSP project folder

clean-this-app

create-this-app

bsp_settings.tcl (optional)

Note: bsp_settings.tcl is a Tcl configuration file. For more information about the Tcl
configuration file, refer to “Configuring the BSP Project”.
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To build your own software project from the command line, create your own create-
this-app and create-this-bsp scripts. Intel recommends that you also create clean-
this-app and clean-this-bsp scripts. These scripts perform the following tasks:

• create-this-app—This bash script uses the nios2-app-generate-makefile
command to create the application project, using the application software source
files for your project. The script verifies that the BSP project is properly configured
(a settings.bsp file is present in the BSP project directory), and runs the create-
this-bsp script if necessary. The Intel-supplied create-this-app scripts that are
included in the embedded design examples on the All Design Examples web page
of the Intel website provide good models for this script.

• clean-this-app—This bash script performs all necessary clean-up tasks for the
whole project, including the following:

— Call the application makefile with the clean-all target.

— Call the clean-this-bsp shell script.

• create-this-bsp—This bash script generates the BSP project. The script uses the
nios2-bsp command, which can optionally call the configuration script
bsp_settings.tcl. The nios2-bsp command references the
<system_name>.sopcinfo file located in the hardware project folder. Running this
script creates the BSP project, and builds the BSP library file for the system.

• clean-this-bsp—This bash script calls the clean target in the BSP project
makefile and deletes the settings.bsp file.

The complete system generation process, from hardware to BSP and application
projects, must be repeated every time a change is made to the system in Qsys.
Therefore, defining all your settings in your create-this-bsp script is more efficient
than using the Nios II BSP Editor to customize your project. The system generation
process follows:

1. Hardware files generation—Using Qsys, write the updated system description to
the <system_name>.sopcinfo file.

2. Regenerate BSP project—Generate the BSP project with the create-this-bsp
script.

3. Regenerate application project—Generate the application project with the
create-this-app script. This script typically runs the create-this-bsp script,
which builds the BSP project by creating and running the makefile to generate the
BSP library file.

4. Build the system—Build the system software using the application and BSP
makefile scripts. The create-this-app script runs make to build both the
application project and the BSP library.

To implement this system generation process, Intel recommends that you use the
following checklists for handing off responsibility between the hardware and software
groups.

Note: This method assumes that the hardware engineering group installs the Nios II EDS. If
so, the hardware and software engineering groups must use the same version of the
Nios II EDS toolchain.
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To hand off the project from the hardware group to the software group, perform the
following steps:

1. Hardware project hand-off—The hardware group provides copies of the
<system_name>.sopcinfo and <system_name>.sof files. The software group
copies these files to the software group’s hardware project folder.

2. Recreate software project—The software team recreates the software
application for the new hardware by running the create-this-app script. This
script runs the create-this-bsp script.

3. Build—The software team runs make in its application project directory to
regenerate the software application.

To hand off the project from the software group to the hardware group, perform the
following steps:

1. Clean project directories—The software group runs the clean-this-app script.

2. Software project folder hand-off—The software group provides the hardware
group with the software project folder structure it generated for the latest
hardware version. Ideally, the software project folder contains only the application
project files and the application project and BSP generation scripts.

3. Reconfigure software project—The hardware group runs the create-this-app
script to reconfigure the group’s application and BSP projects.

4. Build—The hardware group runs make in the application project directory to
regenerate the software application.

Related Links

• All Design Examples

• Configuring the BSP Project on page 146

4.2.2.5.2 Recommended Architecture Practice

Many of the hardware and software coherency issues that arise during the creation of
the application software are problems of misplaced peripheral addresses. Because of
the flexibility provided by Qsys, almost any peripheral in the system can be assigned
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an arbitrary address, or have its address modified during system creation. Implement
the following practices to prevent this type of coherency issue during the creation of
your software application:

• Peripheral and Memory Addressing—The Nios II Software Build Tools
automatically generate a system header file, system.h, that defines a set of
#define symbols for every peripheral in the system. These definitions specify the
peripheral name, base address location, and address span. If the Memory
Management Unit (MMU) is enabled in your Nios II system, verify that the address
span for all peripherals is located in direct-mapped memory, outside the memory
address range managed by the MMU.

To protect against coherency issues, access all system peripherals and memory
components with their system.h name and address span symbols. This method
guarantees successful peripheral register access even after a peripheral's
addressable location changes.

For example, if your system includes a UART peripheral named UART1, located at
address 0x1000, access the UART1 registers using the system.h address symbol
(iowr_32(UART1_BASE, 0x0, 0x10101010)) rather than using its address
(iowr_32(0x1000, 0x0, 0x10101010)).

• Checking peripheral values with the preprocessor—If you work in a large
team environment, and your software has a dependency on a particular hardware
address, you can create a set of C preprocessor #ifdef statements that validate
the hardware during the software compilation process. These #ifdef statements
validate the #define values in the system.h file for each peripheral.

For example, for the peripheral UART1, assume the #define values in system.h
appear as follows:

#define UART1_NAME "/dev/uart1"
#define UART1_BASE 0x1000
#define UART1_SPAN 32
#define UART1_IRQ 6
. . .

In your C/C++ source files, add a preprocessor macro to verify that your expected
peripheral settings remain unchanged in the hardware configuration. For example,
the following code checks that the base address of UART1 remains at the expected
value:

#if (UART1_BASE != 0x1000)
#error UART should be at 0x1000, but it is not
#endif

• Ensuring coherency with the System ID core—Use the System ID core. The
System ID core is an Qsys peripheral that provides a unique identifier for a
generated hardware system. This identifier is stored in a hardware register
readable by the Nios II processor. This unique identifier is also stored in
the .sopcinfo file, which is then used to generate the BSP project for the system.
You can use the system ID core to ensure coherency between the hardware and
software by either of the following methods:

— The first method is optionally implemented during system software
development, when the Executable and Linking Format (.elf) file is
downloaded to the Nios II target. During the software download process, the
value of the system ID core is checked against the value present in the BSP
library file. If the two values do not match, this condition is reported. If you
know that the system ID difference is not relevant, the system ID check can
be overridden to force a download. Use this override with extreme caution,
because a mismatch between hardware and software can lead you to waste
time trying to resolve nonexistent bugs.

— The second method for using the system ID peripheral is useful in systems
that do not have a Nios II debug port, or in situations in which running the
Nios II software download utilities is not practical. In this method you use the
C function alt_avalon_sysid_test(). This function reports whether the
hardware and software system IDs match.

For more information about the System ID core, refer to the System ID Core
chapter of the Embedded Peripherals IP User Guide.
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Related Links

Embedded Peripherals IP User Guide

4.2.3 Developing With the Hardware Abstraction Layer

The HAL for the Nios II processor is a lightweight run-time environment that provides
a simple device driver interface for programs to communicate with the underlying
hardware. The HAL API is integrated with the ANSI C standard library. The HAL API
allows you to access devices and files using familiar C library functions.

4.2.3.1 Overview of the HAL

This section describes how to use HAL services in your Nios II software. It provides
information about the HAL configuration options, and the details of system startup and
HAL services in HAL-based applications.

4.2.3.1.1 HAL Configuration Options

To support the Nios II software development flow, the HAL BSP library is self-
configuring to some extent. By design, the HAL attempts to enable as many services
as possible, based on the peripherals present in the system hardware. This approach
provides your application with the least restrictive environment possible—a useful
feature during the product development and board bringup cycle.

The HAL is configured with a group of settings whose values are determined by Tcl
commands, which are called during the creation of the BSP project.

As mentioned in “Configuring the BSP Project”, Intel recommends you create a
separate Tcl file that contains your HAL configuration settings.

HAL configuration settings control the boot loading process, and provide detailed
control over the initialization process, system optimization, and the configuration of
peripherals and services. For each of these topics, this section provides pointers to the
relevant material elsewhere in this section.

Related Links

Configuring the BSP Project on page 146

4.2.3.1.2 Configuring the Boot Environment

Your particular system may require a boot loader to configure the application image
before it can begin execution. For example, if your application image is stored in flash
memory and must be copied to volatile memory for execution, a boot loader must
configure the application image in the volatile memory. This configuration process
occurs before the HAL BSP library configuration routines execute, and before the crt0
code block executes. A boot loader implements this process.

For more information, refer to “Linking Applications” and “Application Boot Loading
and Programming System Memory”.

Related Links

• Linking Applications on page 183

• Application Boot Loading and Programming System Memory on page 224
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4.2.3.1.3 Controlling HAL Initialization

As noted in “HAL Initialization”, although most application debugging begins in the
main() function, some tasks, such as debugging device driver initialization, require
the ability to control overall system initialization after the crt0 initialization routine
runs and before main() is called.

For an example of this kind of application, refer to the hello_alt_main software
example design supplied with the Nios II EDS installation.

Related Links

HAL Initialization on page 164

4.2.3.1.4 Minimizing the Code Footprint and Increasing Performance

For information about increasing your application's performance, or minimizing the
code footprint, refer to “Software Application Optimization”.

Related Links

Software Application Optimization on page 291

4.2.3.1.5 Configuring Peripherals and Services

For information about configuring and using HAL services, refer to “HAL Peripheral
Services”.

Related Links

HAL Peripheral Services on page 166

4.2.3.2 System Startup in HAL-Based Applications

System startup in HAL-based applications is a three-stage process. First, the system
initializes, then the crt0 code section runs, and finally the HAL services initialize. The
following sections describe these three system-startup stages.
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4.2.3.2.1 System Initialization

The system initialization sequence begins when the system powers up. The
initialization sequence steps for FPGA designs that contain a Nios II processor are the
following:

1. Hardware reset event—The board receives a power-on reset signal, which
resets the FPGA.

2. FPGA configuration—The FPGA is programmed with a .sof file, from a specialized
configuration memory or an external hardware master. The external hardware
master can be a CPLD device or an external processor.

3. System reset—The Qsys system, composed of one or more Nios II processors
and other peripherals, receives a hardware reset signal and enters the
components’ combined reset state.

4. Nios II processor(s)—Each Nios II processor jumps to its preconfigured reset
address, and begins running instructions found at this address.

5. Boot loader or program code—Depending on your system design, the reset
address vector contains a packaged boot loader, called a boot image, or your
application image. Use the boot loader if the application image must be copied
from non-volatile memory to volatile memory for program execution. This case
occurs, for example, if the program is stored in flash memory but runs from
SDRAM. If no boot loader is present, the reset vector jumps directly to the .crt0
section of the application image. Do not use a boot loader if you wish your
program to run in-place from non-volatile or preprogrammed memory.

For additional information about both of these cases, refer to “Application Boot
Loading and Programming System Memory”.

6. crt0 execution—After the boot loader executes, the processor jumps to the
beginning of the program's initialization block—the .crt0 code section. The
function of the crt0 code block is detailed in the next section.

Related Links

Application Boot Loading and Programming System Memory on page 224

4.2.3.2.2 crt0 Initialization

The crt0 code block contains the C run-time initialization code—software instructions
needed to enable execution of C or C++ applications. The crt0 code block can
potentially be used by user-defined assembly language procedures as well. The Intel-
provided crt0 block performs the following initialization steps:

1. Calls alt_load macros—If the application is designed to run from flash memory
(the .text section runs from flash memory), the remaining sections are copied to
volatile memory.

For additional information, refer to “Configuring the Boot Environment”.

2. Initializes instruction cache—If the processor has an instruction cache, this
cache is initialized. All instruction cache lines are zeroed (without flushing) with
the initi instruction.
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Note: Qsys determines the processors that have instruction caches, and
configures these caches at system generation. The Nios II Software Build
Tools insert the instruction-cache initialization code block if necessary.

3. Initializes data cache—If the processor has a data cache, this cache is
initialized. All data cache lines are zeroed (without flushing) with the initd
instruction. As for the instruction caches, this code is enabled if the processor has
a data cache.

4. Sets the stack pointer—The stack pointer is initialized. You can set the stack
pointer address.

For additional information refer to “HAL Linking Behavior”.

5. Clears the .bss section—The .bss section is initialized to all zeroes. You can set
the .bss section address.

For additional information refer to “HAL Linking Behavior”.

6. Initializes stack overflow protection—Stack overflow checking is initialized.

For additional information, refer to “Software Debugging in Nios II Software Build
Tools for Eclipse”.

7. Jumps to alt_main()—The processor jumps to the alt_main() function, which
begins initializing the HAL BSP run-time library.

Note: If you use a third-party RTOS or environment for your BSP library file, the
alt_main() function could be different than the one provided by the Nios
II EDS.

If you use a third-party compiler or library, the C run-time initialization behavior may
differ from this description.

The crt0 code includes initialization short-cuts only if you perform hardware
simulations of your design. You can control these optimizations by turning
hal.enable_sim_optimize on or off.

For information about the hal.enable_sim_optimize BSP setting, refer to
“Settings Managed by the Software Build Tools” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

The crt0.S source file is located in the <Altera tools installation>/ip/altera/
nios2_ip/altera_nios2/HAL/src directory.

Related Links

• Nios II Software Build Tools Reference

• Configuring the Boot Environment on page 161

• HAL Linking Behavior on page 183

• Software Debugging in Nios II Software Build Tools for Eclipse on page 156

4.2.3.2.3 HAL Initialization

As for any other C program, the first part of the HAL's initialization is implemented by
the Nios II processor's crt0.S routine. For more information, see “crt0 Initialization”.
After crt0.S completes the C run-time initialization, it calls the HAL alt_main()
function, which initializes the HAL BSP run-time library and subsystems.
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The HAL alt_main() function performs the following steps:

1. Initializes interrupts—Sets up interrupt support for the Nios II processor (with
the alt_irq_init() function).

2. Starts MicroC/OS-II—Starts the MicroC/OS-II RTOS, if this RTOS is configured
to run (with the ALT_OS_INIT and ALT_SEM_CREATE functions). For additional
information about MicroC/OS-II use and initialization, refer to “Selecting the
Operating System (HAL versus MicroC/OS-II RTOS)”.

3. Initializes device drivers—Initializes device drivers (with the alt_sys_init()
function). The Nios II Software Build Tools automatically find all peripherals
supported by the HAL, and automatically insert a call to a device configuration
function for each peripheral in the alt_sys_init() code. To override this
behavior, you can disable a device driver with the Nios II BSP Editor, in the Drivers
tab.

For information about enabling and disabling device drivers, refer to “Using the
BSP Editor” in the Getting Started with the Graphical User Interface chapter of the
Nios II Gen2 Software Developer's Handbook.

To disable a driver from the Nios II Command Shell, use the following option to
the nios2-bsp script:

--cmd set_driver <peripheral_name> none

For information about removing a device configuration function, and other
methods of reducing the BSP library size, refer to Table 42 on page 297.

4. Configures stdio functions—Initializes stdio services for stdin, stderr, and
stdout. These services enable the application to use the GNU newlib stdio
functions and maps the file pointers to supported character devices.For more
information about configuring the stdio services, refer to “Character Mode
Devices”.

5. Initializes C++ CTORS and DTORS—Handles initialization of C++
constructor and destructor functions. These function calls are necessary if your
application is written in the C++ programming language. By default, the HAL
configuration mechanism enables support for the C++ programming language.
Disabling this feature reduces your application's code footprint, as noted in
“Software Application Optimization”.

The Nios II C++ language support depends on the GCC tool chain. The Nios II
GCC 4 C++ tool chain supports polymorphism, friendship and inheritance, multiple
inheritance, virtual base classes, run-time type information (typeid), the mutable
type qualifier, namespaces, templates, new-and-delete style dynamic memory
allocation, operator overloading, and the Standard Template Library (STL).
Exceptions and new-style dynamic casts are not supported.

6. Calls main()—Calls function main(), or application program. Most applications
are constructed using a main() function declaration, and begin execution at this
function.

If you use a BSP that is not based on the HAL and need to initialize it after the
crt0.S routine runs, define your own alt_main() function. For an example, see
the main() and alt_main() functions in the hello_alt_main.c file at <Nios II
EDS install dir>\examples\software\hello_alt_main.

After you generate your BSP project, the alt_main.c source file is located in the
HAL/src directory.
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Related Links

• Getting Started with the Graphical User Interface

• crt0 Initialization on page 163

• Selecting the Operating System (HAL versus MicroC/OS-II RTOS) on page 146

• Character Mode Devices on page 169

• Software Application Optimization on page 291

4.2.3.3 HAL Peripheral Services

The HAL provides your application with a set of services, typically relying on the
presence of a hardware peripheral to support the services. By default, if you configure
your HAL BSP project from the command-line by running the nios2-bsp script, each
peripheral in the system is initialized, operational, and usable as a service at the entry
point of your C/C++ application (main()).

This section describes the core set of Intel-supplied, HAL-accessible peripherals and
the services they provide for your application. It also describes application design
guidelines for using the supplied service, and background and configuration
information, where appropriate.

For more information about the HAL peripheral services, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Gen2 Software
Developer's Handbook. For more information about HAL BSP configuration settings,
refer to the Nios II Software Build Tools Reference chapter of the Nios II Gen2
Software Developer's Handbook.

Related Links

• Nios II Software Build Tools Reference

• Developing Programs Using the Hardware Abstraction Layer

4.2.3.3.1 Timers

The HAL provides two types of timer services, a system clock timer and a timestamp
timer. The system clock timer is used to control, monitor, and schedule system events.
The timestamp variant is used to make high performance timing measurements. Each
of these timer services is assigned to a single Intel Avalon Timer peripheral.

For more information about this peripheral, refer to the Interval Timer Core chapter of
the Embedded Peripherals IP User Guide.

Related Links

Embedded Peripherals IP User Guide

System Clock Timer

The system clock timer resource is used to trigger periodic events (alarms), and as a
timekeeping device that counts system clock ticks. The system clock timer service
requires that a timer peripheral be present in the Qsys system. This timer peripheral
must be dedicated to the HAL system clock timer service.

Note: Only one system clock timer service may be identified in the BSP library. This timer
should be accessed only by HAL supplied routines.
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The hal.sys_clk_timer setting controls the BSP project configuration for the
system clock timer. This setting configures one of the timers available in your Qsys
design as the system clock timer.

Intel provides separate APIs for application-level system clock functionality and for
generating alarms.

Application-level system clock functionality is provided by two separate classes of
APIs, one Nios II specific and the other Unix-like. The Intel function alt_nticks
returns the number of clock ticks that have elapsed. You can convert this value to
seconds by dividing by the value returned by the alt_ticks_per_second()
function. For most embedded applications, this function is sufficient for rudimentary
time keeping.

The POSIX-like gettimeofday() function behaves differently in the HAL than on a
Unix workstation. On a workstation, with a battery backed-up, real-time clock, this
function returns an absolute time value, with the value zero representing 00:00
Coordinated Universal Time (UTC), January 1, 1970, whereas in the HAL, this function
returns a time value starting from system power-up. By default, the function assumes
system power-up to have occurred on January 1, 1970. Use the settimeofday()
function to correct the HAL gettimeofday() response. The times() function exhibits
the same behavior difference.

Consider the following common issues and important points before you implement a
system clock timer:

• System Clock Resolution—The timer’s period value specifies the rate at which
the HAL BSP project increments the internal variable for the system clock counter.
If the system clock increments too slowly for your application, you can decrease
the timer's period in Qsys.

• Rollover—The internal, global variable that stores the number of system clock
counts (since reset) is a 32-bit unsigned integer. No rollover protection is offered
for this variable. Therefore, you should calculate when the rollover event will occur
in your system, and plan the application accordingly.

• Performance Impact—Every clock tick causes the execution of an interrupt
service routine. Executing this routine leads to a minor performance penalty. If
your system hardware specifies a short timer period, the cumulative interrupt
latency may impact your overall system performance.

The alarm API allows you to schedule events based on the system clock timer, in the
same way an alarm clock operates. The API consists of the alt_alarm_start()
function, which registers an alarm, and the alt_alarm_stop() function, which
disables a registered alarm.
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Consider the following common issues and important points before you implement an
alarm:

• Interrupt Service Routine (ISR) context—A common mistake is to program
the alarm callback function to call a service that depends on interrupts being
enabled (such as the printf() function). This mistake causes the system to
deadlock, because the alarm callback function occurs in an interrupt context, while
interrupts are disabled.

• Resetting the alarm—The callback function can reset the alarm by returning a
nonzero value. Internally, the alt_alarm_start() function is called by the
callback function with this value.

• Chaining—The alt_alarm_start() function is capable of handling one or more
registered events, each with its own callback function and number of system clock
ticks to the alarm.

• Rollover—The alarm API handles clock rollover conditions for registered alarms
seamlessly.

A good timer period for most embedded systems is 50 ms. This value provides enough
resolution for most system events, but does not seriously impact performance nor roll
over the system clock counter too quickly.

Timestamp Timer

The timestamp timer service provides applications with an accurate way to measure
the duration of an event in the system. The timestamp timer service requires that a
timer peripheral be present in the Qsys system. This timer peripheral must be
dedicated to the HAL timestamp timer service.

Only one timestamp timer service may be identified in the BSP library file. This timer
should be accessed only by HAL supplied routines.

The hal.timestamp_timer setting controls the BSP configuration for the timer. This
setting configures one of the timers available in the Qsys design as the timestamp
timer.

Intel provides a timestamp API. The timestamp API is very simple. It includes the
alt_timestamp_start() function, which makes the timer operational, and the
alt_timestamp() function, which returns the current timer count.

Consider the following common issues and important points before you implement a
timestamp timer:

• Timer Frequency—The timestamp timer decrements at the clock rate of the clock
that feeds it in the Qsys system. You can modify this frequency in Qsys.

• Rollover—The timestamp timer has no rollover event. When the alt_timestamp()
function returns the value 0, the timer has run down.

• Maximum Time—The timer peripheral has 32 bits available to store the timer
value. Therefore, the maximum duration a timestamp timer can count is ((1/timer
frequency) × 232) seconds.

For more information about the APIs that control the timestamp and system clock
timer services, refer to the HAL API Reference chapter of the Nios II Gen2 Software
Developer's Handbook.
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Related Links

HAL API Reference

4.2.3.3.2 Character Mode Devices

stdin, stdout, and stderr

The HAL can support the stdio functions provided in the GNU newlib library. Using the
stdio library allows you to communicate with your application using functions such as
printf() and scanf().

Currently, Intel supplies two system components that can support the stdio library,
the UART and JTAG UART components. These devices can function as standard I/O
devices.

To enable this functionality, use the --default_stdio <device> option during Nios
II BSP configuration. The stdin character input file variable and the stdout and
stderr character output file variables can also be individually configured with the HAL
BSP settings hal.stdin, hal.stdout, and hal.stderr.

Make sure that you assign values individually for each of the stdin, stdout, and
stderr file variables that you use.

After your target system is configured to use the stdin, stdout, and stderr file
variables with either the UART or JTAG UART peripheral, you can communicate with
the target Nios II system with the Nios II EDS development tools. For more
information about performing this task, refer to “Communicating with the Target”.

For more information about the --default_stdio <device> option, refer to “Nios II
Software Build Tools Utilities” in the Nios II Software Build Tools Reference chapter of
the Nios II Gen2 Software Developer's Handbook.

Related Links

• Nios II Software Build Tools Reference

• Communicating with the Target on page 155

Blocking versus Non-Blocking I/O

Character mode devices can be configured to operate in blocking mode or non-
blocking mode. The mode is specified in the device’s file descriptor. In blocking mode,
a function call to read from the device waits until the device receives new data. In
non-blocking mode, the function call to read new data returns immediately and
reports whether new data was received. Depending on the function you use to read
the file handle, an error code is returned, specifying whether or not new data arrived.

The UART and JTAG UART components are initialized in blocking mode. However, each
component can be made non-blocking with the fnctl or the ioctl() function, as
seen in the following open system call, which specifies that the device being opened is
to function in non-blocking mode:

fd = open ("/dev/<your uart name>", O_NONBLOCK | O_RDWR);
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The fnctl() system call shown in the example below specifies that a device that is
already open is to function in non-blocking mode:

Example 18. fnctl() System Call

/* You can specify <file_descriptor> to be
* STDIN_FILENO, STDOUT_FILENO, or STDERR_FILENO
* if you are using STDIO
*/
fnctl(<file_descriptor>, F_SETFL, O_NONBLOCK);

Example 19. Non-Blocking Device Code Fragment

input_chars[128];
return_chars = scanf("%128s", &input_chars);
if(return_chars == 0)
{
if(errno != EWOULDBLOCK)
{
/* check other errnos */
}
}
else
{
/* process received characters */
}

The behavior of the UART and JTAG UART peripherals can also be modified with an
ioctl() function call. The ioctl() function supports the following parameters:

• For UART peripherals:

— TIOCMGET (reports baud rate of UART)

— TIOCMSET (sets baud rate of UART)

• For JTAG UART peripherals:

— TIOCSTIMEOUT (timeout value for connecting to workstation)

— TIOCGCONNECTED (find out whether host is connected)

The altera_avalon_uart_driver.enable_ioctl BSP setting enables and
disables the ioctl() function for the UART peripherals. The ioctl() function is
automatically enabled for the JTAG UART peripherals.

The ioctl() function is not compatible with the
altera_avalon_uart_driver.enable_small_driver and
hal.enable_reduced_driver BSP settings. If either of these settings is enabled,
ioctl() is not implemented.

Adding Your Own Character Mode Device

If you have a custom device capable of character mode operation, you can create a
custom device driver that the stdio library functions can use.

For information about how to develop the device driver, refer to AN459: Guidelines for
Developing a Nios II HAL Device Driver.
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Related Links

AN459: Guidelines for Developing a Nios II HAL Device Driver

4.2.3.3.3 Flash Memory Devices

The HAL BSP library supports parallel common flash interface (CFI) memory devices
and Intel erasable, programmable, configurable serial (EPCS) flash memory devices. A
uniform API is available for both flash memory types, providing read, write, and erase
capabilities.

Memory Initialization, Querying, and Device Support

Every flash memory device is queried by the HAL during system initialization to
determine the kind of flash memory and the functions that should be used to manage
it. This process is automatically performed by the alt_sys_init() function, if the
device drivers are not explicitly omitted and the small driver configuration is not set.

After initialization, you can query the flash memory for status information with the
alt_flash_get_flash_info() function. This function returns a pointer to an array
of flash region structures—C structures of type struct flash_region—and the
number of regions on the flash device.

For additional information about the struct flash_region structure, refer to the
source file HAL/inc/sys/alt_flash_types.h in the BSP project directory.

Accessing the Flash Memory

The alt_flash_open() function opens a flash memory device and returns a
descriptor for that flash memory device. After you complete reading and writing the
flash memory, call the alt_flash_close() function to close it safely.

The HAL flash memory device model provides you with two flash access APIs, one
simple and one fine-grained The simple API takes a buffer of data and writes it to the
flash memory device, erasing the sectors if necessary. The fine-grained API enables
you to manage your flash device on a block-by-block basis.

Both APIs can be used in the system. The type of data you store determines the most
useful API for your application. The following general design guidelines help you
determine which API to use for your data storage needs:

Simple API—This API is useful for storing arbitrary streams of bytes, if the exact flash
sector location is not important. Examples of this type of data are log or data files
generated by the system during run-time, which must be accessed later in a
continuous stream somewhere in flash memory.

Fine-Grained API—This API is useful for storing units of data, or data sets, which
must be aligned on absolute sector boundaries. Examples of this type of data include
persistent user configuration values, FPGA hardware images, and application images,
which must be stored and accessed in a given flash sector (or sectors).

For examples that demonstrate the use of APIs, refer to the “Using Flash Devices”
section in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Gen2 Software Developer's Handbook.

Related Links

Developing Programs Using the Hardware Abstraction Layer
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Configuration and Use Limitations

If you use flash memories in your system, be aware of the following properties of this
memory:

• Code Storage—If your application runs code directly from the flash memory, the
flash manipulation functions are disabled. This setting prevents the processor from
erasing the memory that holds the code it is running. In this case, the symbols
ALT_TEXT_DEVICE, ALT_RODATA_DEVICE, and ALT_EXCEPTIONS_DEVICE must
all have values different from the flash memory peripheral. (Note that each of
these #define symbols names a memory device, not an address within a memory
device).

• Small Driver—If the small driver flag is set for the software—the
hal.enable_reduced_device_drivers setting is enabled—then the flash
memory peripherals are not automatically initialized. In this case, your application
must call the initialization routines explicitly.

• Thread safety—Most of the flash access routines are not thread-safe. If you use
any of these routines, construct your application so that only one thread in the
system accesses these function.

• EPCS flash memory limitations—The Intel EPCS memory has a serial interface.
Therefore, it cannot run Nios II instructions and is not visible to the Nios II
processor as a standard random-access memory device. Use the Intel-supplied
flash memory access routines to read data from this device.

• File System—The HAL flash memory API does not support a flash file system in
which data can be stored and retrieved using a conventional file handle. However,
you can store your data in flash memory before you run your application, using
the read-only zip file system and the Nios II flash programmer utility. For
information about the read-only zip file system, refer to “Read-Only Zip File
System”.

For more information about the configuration and use limitations of flash memory,
refer to the “Using Flash Devices” section in the Developing Programs Using the
Hardware Abstraction Layer chapter of the Nios II Gen2 Software Developer's
Handbook. For more information about the API for the flash memory access routines,
refer to the HAL API Reference chapter of the Nios II Gen2 Software Developer’s
Handbook.

Related Links

• HAL API Reference

• Developing Programs Using the Hardware Abstraction Layer

• Read-Only Zip File System on page 177

4.2.3.3.4 Direct Memory Access Devices

The HAL Direct Memory Access (DMA) model uses DMA transmit and receive channels.
A DMA operation places a transaction request on a channel. A DMA peripheral can
have a transmit channel, a receive channel, or both. This section describes three
possible hardware configurations for a DMA peripheral, and shows how to activate
each kind of DMA channel using the HAL memory access functions.

The DMA peripherals are initialized by the alt_sys_init() function call, and are
automatically enabled by the nios2-bsp script.
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DMA Configuration and Use Model

The following examples illustrate use of the DMA transmit and receive channels in a
system. The information complements the information available in “Using DMA
Devices” in the Developing Programs Using the Hardware Abstraction Layer chapter of
the Nios II Gen2 Software Developer's Handbook.

Regardless of the DMA peripheral connections in the system, initialize a transmit
channel by running the alt_dma_txchan_open() function, and initialize a receive
DMA channel by running the alt_dma_rxchan_open() function. The following
sections describe the use model for some specific cases.

Related Links

Developing Programs Using the Hardware Abstraction Layer

RX-Only DMA Component

A typical RX-only DMA component moves the data it receives from another component
to memory. In this case, the receive channel of the DMA peripheral reads continuously
from a fixed location in memory, which is the other peripheral's data register. The
following sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_rxchan_open() function to open
the receive DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_rxchan_ioctl() function to
set the ALT_DMA_RX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin loading new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_prepare()
function to begin a DMA operation. In the function call, you specify the DMA
receive channel, the other peripheral’s data register address, the number of bytes
to transfer, and a callback function to run when the transaction is complete.

TX-Only DMA Component

A typical TX-only DMA component moves data from memory to another component. In
this case, the transmit channel of the DMA peripheral writes continuously to a fixed
location in memory, which is the other peripheral's data register. The following
sequence of operations directs the DMA peripheral:

1. Open the DMA peripheral—Call the alt_dma_txchan_open() function to open
the transmit DMA channel.

2. Enable DMA ioctl operations—Call the alt_dma_txchan_ioctl() function to
set the ALT_DMA_TX_ONLY_ON flag. Use the ALT_DMA_SET_MODE_<n> flag to
set the data width to match that of the other peripheral’s data register.

3. Configure the other peripheral to run—The Nios II processor configures the other
peripheral to begin receiving new data in its data register.

4. Queue the DMA transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA operation. In the function call, you specify the DMA
transmit channel, the other peripheral’s data register address, the number of
bytes to transfer, and a callback function to run when the transaction is complete.
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RX and TX DMA Component

A typical RX and TX DMA component performs memory-to-memory copy operations.
The application must open, configure, and assign transaction requests to both DMA
channels explicitly. The following sequence of operations directs the DMA peripheral:

1. Open the DMA RX channel—Call the alt_dma_rxchan_open() function to open
the DMA receive channel.

2. Enable DMA RX ioctl operations—Call the alt_dma_rxchan_ioctl() function
to set the ALT_DMA_RX_ONLY_OFF flag. Use the ALT_DMA_SET_MODE_<n> flag
to set the data width to the correct value for the memory transfers.

3. Open the DMA TX channel—Call the alt_dma_txchan_open() function to open
the DMA transmit channel.

4. Enable DMA TX ioctl operations—Call the alt_dma_txchan_ioctl() function
to set the ALT_DMA_TX_ONLY_OFF flag. Use the ALT_DMA_SET_MODE_<n> flag
to set the data width to the correct value for the memory transfers.

5. Queue the DMA RX transaction requests—Call the alt_avalon_dma_prepare()
function to begin a DMA RX operation. In the function call, you specify the DMA
receive channel, the address from which to begin reading, the number of bytes to
transfer, and a callback function to run when the transaction is complete.

6. Queue the DMA TX transaction requests—Call the alt_avalon_dma_send()
function to begin a DMA TX operation. In the function call, you specify the DMA
transmit channel, the address to which to begin writing, the number of bytes to
transfer, and a callback function to run when the transaction is complete.

The DMA peripheral does not begin the transaction until the DMA TX transaction
request is issued.

For examples of DMA device use, refer to “Using DMA Devices” in the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Gen2 Software
Developer's Handbook.

Related Links

Developing Programs Using the Hardware Abstraction Layer

DMA Data-Width Parameter

The DMA data-width parameter is configured in Qsys to specify the widths that are
supported. In writing the software application, you must specify the width to use for a
particular transaction. The width of the data you transfer must match the hardware
capability of the component.
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Consider the following points about the data-width parameter before you implement a
DMA peripheral:

• Peripheral width—When a DMA component moves data from another peripheral,
the DMA component must use a single-operation transfer size equal to the width
of the peripheral’s data register.

• Transfer length—The byte transfer length specified to the DMA peripheral must be
a multiple of the data width specified.

• Odd transfer sizes—If you must transfer an uneven number of bytes between
memory and a peripheral using a DMA component, you must divide up your data
transfer operation. Implement the longest allowed transfer using the DMA
component, and transfer the remaining bytes using the Nios II processor. For
example, if you must transfer 1023 bytes of data from memory to a peripheral
with a 32-bit data register, perform 255 32-bit transfers with the DMA and then
have the Nios II processor write the remaining 3 bytes.

Configuration and Use Limitations

If you use DMA components in your system, be aware of the following properties of
these components:

• Hardware configuration—The following aspects of the hardware configuration of
the DMA peripheral determine the HAL service:

— DMA components connected to peripherals other than memory support only
half of the HAL API (receive or transmit functionality). The application software
should not attempt to call API functions that are not available.

— The hardware parameterization of the DMA component determines the data
width of its transfers, a value which the application software must take into
account.

• IOCTL control—The DMA ioctl() function call enables the setting of a single
flag only. To set multiple flags for a DMA channel, you must call ioctl() multiple
times.

• DMA transaction slots—The current driver is limited to four transaction slots. If
you must increase the number of transaction slots, you can specify the number of
slots using the macro ALT_AVALON_DMA_NSLOTS. The value of this macro must
be a power of two.

• Interrupts—The HAL DMA service requires that the DMA peripheral's interrupt
line be connected in the system.

• User controlled DMA accesses—If the default HAL DMA access routines are too
unwieldy for your application, you can create your own access functions. For
information about how to remove the default HAL DMA driver routines, refer to
“Reducing Code Size”.

For more information about the HAL API for accessing DMA devices, refer to “Using
DMA Devices” in the Developing Programs Using the Hardware Abstraction Layer
chapter of the Nios II Gen2 Software Developer's Handbook and to the HAL API
Reference chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

• Developing Programs Using the Hardware Abstraction Layer

• Reducing Code Size on page 296
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4.2.3.3.5 Files and File Systems

The HAL provides two simple file systems and an API for dealing with file data. The
HAL uses the GNU newlib library's file access routines, found in file.h, to provide
access to files. In addition, the HAL provides the following file systems:

• Host-based file system—Enables a Nios II system to access the host workstation's
file system

• Read-only zip file system—Enables simple access to preconfigured data in the Nios
II system memory

Several more conventional file systems that support both read and write operations
are available through third-party vendors. For up-to-date information about the file
system solutions available for the Nios II processor, visit the Nios II Processor page of
the Intel website, and look for Intel FPGA Embedded Alliance.

To make either of these software packages visible to your application, you must
enable it in the BSP. You can enable a software package either in the BSP Editor, or
from the command line. The names that specify the host-based file system and read-
only zip file system packages are altera_hostfs and altera_ro_zipfs,
respectively.

Related Links

Nios II Processor

The Host-Based File System

The host-based file system enables the Nios II system to manipulate files on a
workstation through a JTAG connection. The API is a transparent way to access data
files. The system does not require a physical block device.

Consider the following points about the host-based file system before you use it:

• Communication speed—Reading and writing large files to the Nios II system
using this file system is slow.

• Debug use mode—The host-based file system is only available during debug
sessions from the Nios II debug perspective. Therefore, you should use the host-
based file system only during system debugging and prototyping operations.

• Incompatibility with direct drivers—The host-based file system only works if
the HAL BSP library is configured with direct driver mode disabled. However,
enabling this mode reduces the size of the application image. For more
information, refer to “Software Application Optimization”.

For more information about the host file system, refer to “Using File Subsystems” in
the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II
Gen2 Software Developer’s Handbook.

Related Links

• Software Application Optimization on page 291

• Developing Programs Using the Hardware Abstraction Layer
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Read-Only Zip File System

The read-only zip file system is a lightweight file system for the Nios II processor,
targeting flash memory.

Consider the following points about the read-only zip file system before you use it:

• Read-Only—The read-only zip file system does not implement writes to the file
system.

• Configuring the file system—To create the read-only zip file system you must
create a binary file on your workstation and use the Nios II flash programmer
utility to program it in the Nios II system.

• Incompatibility with direct drivers—The read-only zip file system only works if
the HAL BSP library is configured with direct driver mode disabled. However,
enabling this mode reduces the size of the application image. For more
information, refer to “Software Application Optimization”.

For more information, refer to the Read-Only Zip File System and Developing
Programs Using the Hardware Abstraction Layer chapters of the Nios II Gen2 Software
Developer's Handbook. Also the read-only zip file system Nios II software example
design listed in “Nios II Design Example Scripts” in the Nios II Software Build Tools
Reference chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Links

• Nios II Software Build Tools Reference

• Software Application Optimization on page 291

• Developing Programs Using the Hardware Abstraction Layer

• Read-Only Zip File System

4.2.3.3.6 Unsupported Devices

The HAL provides a wide variety of native device support for Intel-supplied
peripherals. However, your system may require a device or peripheral that Intel does
not provide. In this case, one or both of the following two options may be available to
you:

• Obtain a device through Intel's third-party program

• Incorporate your own device

Intel's third-party program information is available on the Nios II embedded software
partners page. Refer to the Nios II Processor page of the Intel website, and look for
Intel FPGA Embedded Alliance.

Incorporating your own custom peripheral is a two-stage process. First you must
incorporate the peripheral in the hardware, and then you must develop a device driver.

For more information about how to incorporate a new peripheral in the hardware, refer
to the Nios II Hardware Development Tutorial. For more information about how to
develop a device driver, refer to the Developing Device Drivers for the Hardware
Abstraction Layer chapter of the Nios II Gen2 Software Developer's Handbook and
AN459: Guidelines for Developing a Nios II HAL Device Driver.

Related Links

• AN459: Guidelines for Developing a Nios II HAL Device Driver
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• Nios II Processor

• Developing Device Drivers for the Hardware Abstraction Layer

• Nios II Hardware Development Tutorial

4.2.3.4 Accessing Memory With the Nios II Processor

It can be difficult to create software applications that program the Nios II processor to
interact correctly with data and instruction caches when it reads and writes to
peripherals and memories. There are also subtle differences in how the different Nios
II processor cores handle these operations, that can cause problems when you
migrate from one Nios II processor core to another.

This section helps you avoid the most common pitfalls. It provides background critical
to understanding how the Nios II processor reads and writes peripherals and
memories, and describes the set of software utilities available to you, as well as
providing sets of instructions to help you avoid some of the more common problems in
programming these read and write operations.

4.2.3.4.1 Creating General C/C++ Applications

You can write most C/C++ applications without worrying about whether the
processor's read and write operations bypass the data cache. However, you do need to
make sure the operations do not bypass the data cache in the following cases:

• Your application must guarantee that a read or write transaction actually reaches a
peripheral or memory. This guarantee is critical for the correct functioning of a
device driver interrupt service routine, for example.

• Your application shares a block of memory with another processor or Avalon
interface master peripheral.

4.2.3.4.2 Accessing Peripherals

If your application accesses peripheral registers, or performs only a small set of
memory accesses, Intel recommends that you use the default HAL I/O macros, IORD
and IOWR. These macros guarantee that the accesses bypass the data cache.

Two types of cache-bypass macros are available. The HAL access routines whose
names end in _32DIRECT, _16 DIRECT, and _8 DIRECT interpret the offset as a byte
address. The other routines treat this offset as a count to be multiplied by four bytes,
the number of bytes in the 32-bit connection between the Nios II processor and the
system interconnect fabric. The _32DIRECT, _16DIRECT, and _8DIRECT routines are
designed to access memory regions, and the other routines are designed to access
peripheral registers.

The example below shows how to write a series of half-word values into memory.
Because the target addresses are not all on a 32-bit boundary, this code sample uses
the IOWR_16DIRECT macro.

Example 20. Writing Half-Word Locations

/* Loop across 100 memory locations, writing 0xdead to */
/* every half word location... */
for(i=0, j=0;i<100;i++, j+=2)
{
IOWR_16DIRECT(MEM_START, j, (unsigned short)0xdead);
}
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The example below shows how to access a peripheral register. In this case, the write is
to a 32-bit boundary address, and the code sample uses the IOWR macro.

Example 21. Peripheral Register Access

unsigned int control_reg_val = 0;
/* Read current control register value */
control_reg_val = IORD(BAR_BASE_ADDR, CONTROL_REG);

/* Enable "start" bit */
control_reg_val |= 0x01;

/* Write "start" bit to control register to start peripheral */
IOWR(BAR_BASE_ADDR, CONTROL_REG, control_reg_val);

Note: Intel recommends that you use the HAL-supplied macros for accessing external
peripherals and memory.

4.2.3.4.3 Sharing Uncached Memory

If your application must allocate some memory, operate on that memory, and then
share the memory region with another peripheral (or processor), use the HAL-supplied
alt_uncached_malloc() and alt_uncached_free() functions. Both of these
functions operate on pointers to bypass cached memory.

To share uncached memory between a Nios II processor and a peripheral, perform the
following steps:

1. malloc memory—Run the alt_uncached_malloc() function to claim a block
of memory from the heap. If this operation is successful, the function returns a
pointer that bypasses the data cache.

2. Operate on memory—Have the Nios II processor read or write the memory
using the pointer. Your application can perform normal pointer-arithmetic
operations on this pointer.

3. Convert pointer—Run the alt_remap_cached() function to convert the pointer
to a memory address that is understood by external peripherals.

4. Pass pointer—Pass the converted pointer to the external peripheral to enable it
to perform operations on the memory region.

4.2.3.4.4 Sharing Memory With Cache Performance Benefits

Another way to share memory between a data-cache enabled Nios II processor and
other external peripherals safely without sacrificing processor performance is the
delayed data-cache flush method. In this method, the Nios II processor performs
operations on memory using standard C or C++ operations until it needs to share this
memory with an external peripheral.

Note: Your application can share non-cache-bypassed memory regions with external masters
if it runs the alt_dcache_flush() function before it allows the external master to
operate on the memory.
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To implement delayed data-cache flushing, the application image programs the Nios II
processor to follow these steps:

1. Processor operates on memory—The Nios II processor performs reads and
writes to a memory region. These reads and writes are C/C++ pointer or array
based accesses or accesses to data structures, variables, or a malloc'ed region of
memory.

2. Processor flushes cache—After the Nios II processor completes the read and
write operations, it calls the alt_dcache_flush() instruction with the location
and length of the memory region to be flushed. The processor can then signal to
the other memory master peripheral to operate on this memory.

3. Processor operates on memory again—When the other peripheral has
completed its operation, the Nios II processor can operate on the memory once
again. Because the data cache was previously flushed, any additional reads or
writes update the cache correctly.

The example below shows an implementation of delayed data-cache flushing for
memory accesses to a C array of structures. In the example, the Nios II processor
initializes one field of each structure in an array, flushes the data cache, signals to
another master that it may use the array, waits for the other master to complete
operations on the array, and then sums the values the other master is expected to set.

Example 22. Data-Cache Flushing With Arrays of Structures

struct input foo[100];

for(i=0;i<100;i++)
    foo[i].input = i;
alt_dcache_flush(&foo, sizeof(struct input)*100);
signal_master(&foo);
for(i=0;i<100;i++)
    sum += foo[i].output;

The example below shows an implementation of delayed data-cache flushing for
memory accesses to a memory region the Nios II processor acquired with malloc().

Example 23. Data-Cache Flushing With Memory Acquired Using malloc()

char * data = (char*)malloc(sizeof(char) * 1000);

write_operands(data);
alt_dcache_flush(data, sizeof(char) * 1000);
signal_master(data);
result = read_results(data);
free(data);

The alt_dcache_flush_all() function call flushes the entire data cache, but this
function is not efficient. Intel recommends that you flush from the cache only the
entries for the memory region that you make available to the other master peripheral.
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4.2.3.5 Handling Exceptions

The HAL infrastructure provides a robust interrupt handling service routine and an API
for exception handling. The Nios II processor can handle exceptions caused by
hardware interrupts, unimplemented instructions, and software traps.

This section discusses exception handling with the Nios II internal interrupt controller.
The Nios II processor also supports an external interrupt controller (EIC), which you
can use to prioritize interrupts and make other performance improvements.

For information about the EIC, refer to the Programming Model chapter of the Nios II
Gen2 Processor Reference Handbook. For information about the exception handler
software routines, HAL-provided services, API, and software support for the EIC, refer
to the Exception Handling chapter of the Nios II Gen2 Software Developer's Handbook.

Consider the following common issues and important points before you use the HAL-
provided exception handler:

• Prioritization of interrupts—The Nios II processor does not prioritize its 32
interrupt vectors, but the HAL exception handler assigns higher priority to lower
numbered interrupts. You must modify the interrupt request (IRQ) prioritization of
your peripherals in Qsys.

• Nesting of interrupts—The HAL infrastructure allows interrupts to be nested—
higher priority interrupts can preempt processor control from an exception handler
that is servicing a lower priority interrupt. However, Intel recommends that you
not nest your interrupts because of the associated performance penalty.

• Exception handler environment—When creating your exception handler, you
must ensure that the handler does not run interrupt-dependent functions and
services, because this can cause deadlock. For example, an exception handler
should not call the IRQ-driven version of the printf() function.

• VIC block—Vector interrupt controller block provides an interface to the interrupts
in your system. The VIC offers high-performance, low-latency interrupt handling.
The VIC prioritizes interrupts in hardware and outputs information about the
highest-priority pending interrupt. For more information, refer to the "Vectored
Interrupt Controller Core" chapter of the Embedded Peripheral IP User Guide.

Related Links

• Embedded Peripherals IP User Guide

• Programming Model

• Exception Handling

4.2.3.6 Modifying the Exception Handler

In some very special cases, you may wish to modify the existing HAL exception
handler routine or to insert your own interrupt handler for the Nios II processor.
However, in most cases you need not modify the interrupt handler routines for the
Nios II processor for your software application.
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Consider the following common issues and important points before you modify or
replace the HAL-provided exception handler:

• Interrupt vector address—The interrupt vector address for each Nios II
processor is set during compilation of the FPGA design. You can modify it during
hardware configuration in Qsys.

• Modifying the exception handler—The HAL-provided exception handler is fairly
robust, reliable, and efficient. Modifying the exception handler could break the
HAL-supplied interrupt handling API, and cause problems in the device drivers for
other peripherals that use interrupts, such as the UART and the JTAG UART.

You may wish to modify the behavior of the exception handler to increase overall
performance. For guidelines for increasing the exception handler’s performance, refer
to “Accelerating Interrupt Service Routines”.

Related Links

Accelerating Interrupt Service Routines on page 295
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4.2.4 Linking Applications

This section discusses how the Nios II software development tools create a default
linker script, what this script does, and how to override its default behavior. The
section also includes instructions to control some common linker behavior, and
descriptions of the circumstances in which you may need them.

4.2.4.1 Background

When you generate your project, the Nios II Software Build Tools generate two linker-
related files, linker.x and linker.h. linker.x is the linker command file that the
generated application's makefile uses to create the .elf binary file. All linker setting
modifications you make to the HAL BSP project affect the contents of these two files.

4.2.4.2 Linker Sections and Application Configuration

Every Nios II application contains .text, .rodata, .rwdata, .bss, .heap,
and .stack sections. Additional sections can be added to the .elf file to hold custom
code and data.

These sections are placed in named memory regions, defined to correspond with
physical memory devices and addresses. By default, these sections are automatically
generated by the HAL. However, you can control them for a particular application.

4.2.4.3 HAL Linking Behavior

This section describes the default linking behavior of the BSP generation tools and how
to control the linking explicitly.

4.2.4.3.1 Default BSP Linking

During BSP configuration, the tools perform the following steps automatically:

1. Assign memory region names—Assign a name to each system memory device,
and add each name to the linker file as a memory region.

2. Find largest memory—Identify the largest read-and-write memory region in the
linker file.

3. Assign sections—Place the default sections
(.text, .rodata, .rwdata, .bss, .heap, and .stack) in the memory region
identified in the previous step.

4. Write files—Write the linker.x and linker.h files.

Usually, this section allocation scheme works during the software development
process, because the application is guaranteed to function if the memory is large
enough.

The rules for the HAL default linking behavior are contained in the Intel-generated Tcl
scripts bsp-set-defaults.tcl and bsp-linker-utils.tcl found in the <Nios II EDS
install dir>/sdk2/bin directory. These scripts are called by the nios2-bsp-
create-settings configuration application. Do not modify these scripts directly.
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4.2.4.3.2 User-Controlled BSP Linking

You can manage the default linking behavior in the Linker Script tab of the Nios II BSP
Editor. You can manipulate the linker script in the following ways:

• Add a memory region—Maps a memory region name to a physical memory device.

• Add a section mapping—Maps a section name to a memory region. The Nios II
BSP Editor allows you to view the memory map before and after making changes.

For more information about the linker-related BSP configuration commands, refer to
“Using the BSP Editor” in the Getting Started with the Graphical User Interface chapter
of the Nios II Gen2 Software Developer's Handbook.

Related Links

Getting Started with the Graphical User Interface
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4.3 Nios II MPU Usage

The Nios II MPU Usage section covers the basic features of the Nios® II processor’s
optional memory protection unit (MPU), describing how to use it without the support
of an operating system (OS). When the Nios II MPU is enabled and properly
configured, it monitors all processor data and instruction accesses and triggers
exceptions when illegal accesses are attempted.

Also included are two design examples, with notes about how they work. These
examples walk you through making use of the Nios II processor's MPU in an
environment based on the Intel hardware abstraction layer (HAL), without an OS. One
of the examples uses the MPU to detect the following three issues commonly seen
when debugging embedded systems:

• Stack overflow

• Null pointer

• Wild pointer

Note: Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU
does not provide memory mapping or management.

After you have studied the code and understand the design examples described in this
section, you have the skills to use the Nios II MPU successfully in your HAL-based
design. These examples illustrate the basics of how to use mpubase and mpuacc to
configure your MPU prior to enabling it.

4.3.1 Requirements

To use this section effectively, you need to be familiar with the following topics:

• The basic purpose and architecture of the Nios II MPU

Note: For a detailed description of the Nios II MPU, refer to “Memory Protection
Unit” in the Programming Model chapter of the Nios II Processor Reference
Handbook.
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To work with this section's design examples and software examples, you need the
following items:

• The Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

Note: The design examples use only on-chip hardware resources. Therefore, it is
easy to port the designs to a different hardware platform if necessary.

• Quartus Prime software.

• Nios II Embedded Design Suite (EDS).

• The design example archive file, an540_91.zip. This file is available on the
Literature: Nios II Processor page of the Intel website.

Unzip an540_91.zip to a working directory on your computer. We refer to this
directory throughout this section as <design examples>. Be sure to preserve the
directory structure of the extracted software archive. Extraction creates a
directory structure tree under <design examples> with the following
subdirectories:

— MPU_Design_limit/software_examples/app/mpu_basic

— MPU_Design_limit/software_examples/app/mpu_exc_detection

— MPU_Design_limit/software_examples/bsp/mpu_example_bsp

— MPU_Design_msk/software_examples/app/mpu_basic

— MPU_Design_msk/software_examples/app/mpu_exc_detection

— MPU_Design_msk/software_examples/bsp/mpu_example_bsp

Note: The working directory name you choose must not contain any spaces.

Note: After extracting an540_91.zip, refer to <design examples>/ReadMe.txt for a list of
any required software patches or other updated information. If a patch is required,
install it according to the instructions in ReadMe.txt.

Related Links

• Programming Model

• Literature: Nios II Processor

4.3.2 General Usage

This section describes the process of configuring the Nios II MPU hardware and writing
software to support it.
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4.3.2.1 Adding the MPU Hardware

To add an MPU to your system, you must use a Nios II/f core. In Qsys, enable the MPU
by turning on Include MPU in the Core Nios II tab of the Nios II parameter editor
interface, as shown in below.

Figure 38. Enabling the MPU in the Nios II/f Processor Core
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Use the MMU and MPU Settings tab, as shown below, to configure the MPU.

Figure 39. MMU and MPU Settings Tab

Table 20. MPU Configuration Options

Option Allowed Values Default Value

Use Limit for Region Range Off or On Off

Number of Data Regions 2—32 8

Minimum Data Region Size 256 bytes—1 MB 4 KB

Number of Instruction Regions 2—32 8

Minimum Instruction Region Size 256 bytes—1 MB 4 KB

You can configure the MPU to define the size of its memory regions in either of the
following ways:

• Define region size by specifying an address mask

• Define region size by specifying the end address

By default, the MPU defines region sizes with an address mask. To define region sizes
with an end address, turn on Use Limit for Region Range. For detailed information
about the two methods of specifying region size, refer to “MPU Register Details”
section.

The minimum region size is crucial to understanding MPU run-time configuration. The
minimum region size, <min_region>, specifies the granularity of the MPU memory
map. The size of any particular memory region must be an integer multiple of
<min_region>.

Most of the MPU parameters controlled by software are based on the minimum region
size. You can specify separate values of <min_region> for data and instruction
regions.

Note: For simplicity, this section's design examples have <min_region> = 64 for both data
and instruction regions.
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Related Links

MPU Register Details on page 190

4.3.2.2 Writing Software for the MPU

This section describes the process of writing software to configure and manage the
Nios II MPU.

4.3.2.2.1 MPU Programming Guidelines

Software is responsible for enabling and configuring the MPU as well as maintaining
MPU region information. In a single-threaded operating environment (such as the
Altera HAL), use a global data structure to store the MPU region information.

The Nios II MPU must be disabled before software attempts to configure it.

Software normally initializes the MPU after reset. If it is necessary to change MPU
regions or region permissions after reset, software also reinitializes the MPU.

Every region supported by the MPU must be either configured or disabled before
allowing application code to execute. Leaving a region enabled and unconfigured
results in undefined behavior. For details about how to disable an MPU region, refer to
“Defining Regions with mpubase and mpuacc” section.

Depending on the complexity of your software, you might need to define several MPU
configurations, each with a different set of regions or region permissions. This
technique is typically used by an operating system. For details, refer to “Operating
Systems and the MPU” section.

Related Links

• Defining Regions with mpubase and mpuacc on page 193

• Operating Systems and the MPU on page 189

4.3.2.2.2 Operating Systems and the MPU

Even if you are not using an operating system, it is helpful to understand the
techniques that an OS uses to manage an MPU.

When an operating system uses an MPU, it typically defines two or more MPU
configurations. One configuration defines the permissions that the MPU applies to
operating system or kernel level accesses. One or more configurations define the
permissions available to user or application processes. The OS might also define
additional configurations for non-user purposes. For example, there might be a special
factory task that can modify system-critical information like product serial numbers or
media access control (MAC) addresses in flash or other nonvolatile memory. Such a
task is likely to need a special set of memory and device permissions.

The operating system disables the MPU, reconfigures it, and then re-enables it
whenever the processor needs to run in a different MPU configuration. For example,
the OS might need to change MPU configurations upon the following types of events:

• Exception

• Return from exception

• Operating system call

• Return from operating system call
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The exact circumstances under which MPU reconfiguration is required depends on the
OS implementation and settings.

4.3.2.2.3 MPU Register Details

This section describes the register maps, the meanings of the register fields, and how
the register fields are used.

When you initialize the MPU you use two registers: mpubase and mpuacc.

Register mpubase Usage

Table 21. mpubase Control Register Fields
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Table 22. mpubase Control Register Field Descriptions

Field Description Access Reset

BASE BASE represents the base memory address of the region identified by the
INDEX and D fields.

Read/Write 0

INDEX INDEX is the region index number. Read/Write 0

D D is the region access bit. When D = 1, INDEX refers to a data region. When
D = 0, INDEX refers to an instruction region.

Read/Write 0

You specify an MPU region by writing a value representing the region's base address to
the BASE field, a unique index to the INDEX field, and the region type (data or
instruction) to field D.

The BASE field represents the region's base address, in the form described by the
equation below. The BASE field can only represent addresses aligned to an integer
multiple of <min_region>. For example, if the minimum region size is 16 kilobytes
(KB), regions can be located at addresses such as 0x0, 0x4000, 0x8000, ... .

Figure 40. Base Address Computation

BASE = <base address>/<min_region>

For example, if the region starts at 0x1000 and the minimum region size is 64 bytes,
set the BASE field to 0x40, which is 0x1000/64.

The INDEX field provides a unique identifier for the region. INDEX also specifies the
priority of the region. The lower the index value, the higher the region’s priority.

Use the D field to specify the region type: data or instruction.

2 This field size is variable. Unused upper bits and unused lower bits must be written as zero.

3 This field size is variable. Unused upper bits must be written as zero.
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Register mpuacc Usage

mpuacc has two possible layouts, depending on the Qsys generation-time option Use
limit for region range, as described in “Adding the MPU Hardware” section. This option
controls whether the mpuacc register contains a MASK or LIMIT field. The table below
shows the layout of the mpuacc register with the MASK field.

Table 23. mpuacc Control Register Fields for MASK Variation
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Table 24. mpuacc Control Register Fields for LIMIT Variation
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Table 25. mpuacc Control Register Field Descriptions

Field Description Access Reset

MASK5 MASK specifies the size of the region. Read/Write 0

LIMIT5 LIMIT specifies the upper address limit of the region. Read/Write 0

C C is the data cacheable flag. C only applies to MPU data regions and
determines the default cacheability of a data region. When C = 0, the data
region is uncacheable. When C = 1, the data region is cacheable.

Read/Write 0

PERM PERM specifies the access permissions for the region. Read/Write 0

RD RD is the read region flag. When RD = 1, wrctl instructions to the mpuacc
register perform a read operation.

Write 0

WR WR is the write region flag. When WR = 1, wrctl instructions to the mpuacc
register perform a write operation.

Write 0

If the mpuacc register is configured with the MASK field, the MASK field represents the
size of your region. The value of MASK is defined in the equation below.

Figure 41. Computing Region Mask

MASK = 0x1FFFFFF << log2 ( <region_size> >> 6 )

4 This field size is variable. Unused upper bits and unused lower bits must be written as zero.

5 The MASK and LIMIT fields are mutually exclusive.
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The table below lists every possible MASK value for an MPU configured with a 64-byte
minimum region size.

Table 26. MASK Encodings for 64-byte Minimum Region

MASK Encoding Region Size

0x1FFFFFF 64 bytes

0x1FFFFFE 128 bytes

0x1FFFFFC 256 bytes

0x1FFFFF8 512 bytes

0x1FFFFF0 1 KByte

0x1FFFFE0 2 KB

0x1FFFFC0 4 KB

0x1FFFF80 8 KB

0x1FFFF00 16 KB

0x1FFFE00 32 KB

0x1FFFC00 64 KB

0x1FFF800 128 KB

0x1FFF000 256 KB

0x1FFE000 512 KB

0x1FFC000 1 MB

0x1FF8000 2 MB

0x1FF0000 4 MB

0x1FE0000 8 MB

0x1FC0000 16 MB

0x1F80000 32 MB

0x1F00000 64 MB

0x1E00000 128 MB

0x1C00000 256 MB

0x1800000 512 MB

0x1000000 1 GB

0x0000000 2 GB

If the mpuacc register is configured with the LIMIT field, LIMIT represents the
address immediately following the upper end of your region. For example, suppose the
MPU’s minimum region size is 64 bytes, and you need to set up the following region:

• The region starts at 0x1000

• The region ends at 0x1FFF
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To set up the desired region, configure mpubase.BASE and mpuacc.LIMIT as shown
in the following list:

• Set mpubase.BASE to 0x40, which is 0x1000/64

• Set mpuacc.LIMIT to 0x80, which is 0x2000/64

Use the C field to specify whether a data region is to be cached. Usually, you set C for
memory regions and clear it for regions representing registers or general-purpose
memory-mapped I/O.

The PERM field defines the permissions for the region, as shown in the two tables
below.

Table 27. Instruction Region Permission Encodings

PERM Encoding Supervisor Permissions User Permissions

000 Noe None

001 Execute None

010 Execute Execute

Table 28. Data Region Permission Encodings

PERM Encoding Supervisor Permissions User Permissions

000 None None

001 Read None

010 Read Read

100 Read/Write None

101 Read/Write Read

110 Read/Write Read/Write

Related Links

Adding the MPU Hardware on page 187

Defining Regions with mpubase and mpuacc

The mpubase register works in conjunction with the mpuacc register to set and
retrieve MPU region information. Use the RD and WR fields of mpuacc to instruct the
MPU to perform an MPU region read or write, as shown in the following list:

• Set mpuacc.RD = 1 to perform an MPU region read operation.

• Set mpuacc.WR = 1 to perform an MPU region write operation.

Note: Simultaneously setting both the RD and WR fields to 1 results in undefined behavior.
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An MPU region must be disabled if it is not in use. To disable a region, software sets
up the following conditions:

• mpubase.BASE is any nonzero value.

• If the MPU is configured to define region size by mask, mpuacc.MASK represents
0x80000000, which is 231 (the size of the Nios II address space). For example, if
the minimum region size is 64, or 0x40 bytes, mpuacc.MASK is 0x80000000 /
0x40, or 0x20000000.

• If the MPU is configured to define region size by limit, mpuacc.LIMIT = 0.

4.3.2.2.4 Region Layout Considerations

This section describes how to select MPU region locations and sizes to make the most
effective use of the MPU. For information about the mechanics of setting up MPU
regions, refer to “MPU Register Details” section.

Each region size must be an integer power of two. You must ensure that each region is
aligned to an address that is an integer multiple of its size.

Figure 42. MPU Data Region Example (Addresses not to scale)

A low-priority exclusion region spans the entire 2 GB address space from 0x0 to
0x80000000.

Regions can overlap. For example, you can place a higher-priority region inside a
lower-priority region. region[3] in mpu_utils.c illustrates this technique, creating a
small exclusion region from 0x21000 to 0x21040, as shown in Figure 3. Any access to
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addresses in the 0x21000 to 0x21040 range is controlled by the exclusion region
rather than the stack_ram region (region[4]), because the exclusion region has the
higher priority.

Figure 43. MPU Instruction Region Example (Addresses not to scale)

A low-priority exclusion region spans the entire 2 GB address space from 0x0 to
0x80000000.

Related Links

MPU Register Details on page 190

4.3.2.2.5 Flow Summary

In a Nios II system with an MPU, whenever MPU initialization or reinitialization is
required, the software is responsible for the following tasks:

1. Ensure that the MPU is disabled.
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Note: At system reset, the MPU is disabled by default. At other times, software
must disable the MPU before reconfiguring regions.

2. Initialize and configure the MPU with region information.

3. Enable the MPU prior to executing task-specific or single-threaded application
code.

4.3.3 Nios II MPU Design Examples

The design examples accompanying this section illustrate the use of the Nios II MPU in
a single-threaded environment, such as the Altera HAL.

4.3.3.1 Example Hardware

The simple hardware designs, emphasizing MPU usage, are easily portable to other
hardware platforms. There are two design examples, both targeting the NEEK. In one,
the MPU specifies region sizes by mask, and in the other the MPU specifies region
sizes by limit. Aside from this detail of MPU instantiation, the two designs are
identical.

The address map is designed to make MPU configuration very straightforward. For
instance, the instr_ram and stack_ram memories reside on valid region boundaries,
and the JTAG UART base address is unique and aligned to a valid region boundary, as
illustrated in Figure 42 on page 194.

The figure below illustrates one of the design examples as it appears in Qsys. The
hardware addresses fall on valid MPU region boundaries. While this constraint is not
required, it is more convenient for the software engineer.

Figure 44. MPU Example Hardware System

4.3.3.2 Software

The design files accompanying this section include the following example software
projects:

• mpu_basic—Configures the MPU with several data and instruction regions, and
prints a simple message.

• mpu_exc_detection—Configures the MPU with the same data instruction regions
as in mpu_basic, and sets up an exception handler to detect the following
conditions:

— Null pointer

— Wild pointer

— Stack overflow
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The software examples in each subdirectory are identical. The code is written to detect
the whether the MPU is configured for mask or limit region sizes, and to behave
appropriately.

The mpu_exc_detection example detects stack overflow by creating a small high-
priority exclusion data region in the middle of a larger data region where both the
stack and the heap reside. Whenever the stack grows downwards or the heap grows
upwards into this exclusion region, the MPU triggers an exception and the software
detects it.

The mpu_exc_detection example detects null pointer usage by making sure that no
regions include offset 0x0. The example system is designed such that no components
(memory or otherwise) are located at this offset. If software attempts to access
address 0x0, the MPU triggers an exception, allowing the software to recover. If you
ensure that memories are preinitialized to zero, null pointer detection helps protects
against uninitialized data access.

The mpu_exc_detection example detects wild pointer usage by creating very large
low-priority exclusion regions covering the majority of the memory map. In this way, if
the Nios II processor attempts to access an address outside of valid memory and
peripheral I/O address space, the MPU triggers an exception and software can detect
it.

Both of these software examples use the MPU utility functions and macros in
mpu_utils.c and mpu_utils.h. In both examples, initialization and reinitialization are
handled by two functions: one for data regions, and one for instruction regions. In
most real-world systems, a single function is sufficient to handle initialization and
reinitialization for both types of regions.

4.3.3.2.1 MPU Utilities

You can find helpful MPU utility functions and macros in the mpu_utils.c and
mpu_utils.h files in each software example. The following functions are the most
important for you to understand:

• nios2_mpu_data_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU data regions in your design.

• nios2_mpu_inst_init()—A system-specific function. In your own code, write
an equivalent function to specify the MPU instruction regions in your design.

• nios2_mpu_load_region()—Configures an MPU region with specific
parameters.

• nios2_mpu_enable()—Enables the entire MPU.

• nios2_mpu_disable()—Disables the entire MPU.

Each utility function makes use of the Nios2MPURegion data structure shown in the
example below.

Example 24. Nios2MPURegion Data Structure

typedef struct
{
    unsigned int base;
    unsigned int index;
    unsigned int mask;
    unsigned int c;
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    unsigned int perm;
} Nios2MPURegion;

The example below shows nios2_mpu_inst_init() for the mpu_basic software
example. The constants NIOS2_MPU_NUM_INST_REGIONS and
NIOS2_MPU_REGION_USES_LIMIT are defined in system.h.

In nios2_mpu_inst_init() in the mpu_basic Software Example on page 198,
region[0] grants execution access to the instr_ram memory in both user and
supervisor modes, as shown in Figure 43 on page 195. region[1] grants execution
access to the break and trace memory (starting at 0x1000) in both modes. The other
two MPU instruction regions grant no execution permissions to the entire Nios II
address space. Because their priorities, 2 and 3, are lower than the first two regions,
the code stored in the instr_ram runs, and the break and trace features work
correctly. However, if code attempts to execute outside those regions, the MPU
triggers an exception.

The final statement in nios2_mpu_inst_init() calls nios2_mpu_load_region()
to configure the region with the information contained in the structure.

Example 25. nios2_mpu_inst_init() in the mpu_basic Software Example

void nios2_mpu_inst_init()
{
    unsigned int mask;
    Nios2MPURegion region[NIOS2_MPU_NUM_INST_REGIONS];

    //Main instruction region.
    region[0].index = 0;
        
    region[0].base = 0x400; // Byte Address 0x10000
#ifdef NIOS2_MPU_REGION_USES_LIMIT
    region[0].mask = 0x500; // Byte Address 0x14000
#else
    region[0].mask = 0x1ffff00;
#endif
    region[0].c = 1;
    region[0].perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

    //Instruction region for break address.
    region[1].index = 1;
    region[1].base = 0x40; // Byte Address 0x1000
#ifdef NIOS2_MPU_REGION_USES_LIMIT
    region[1].mask = 0x60; // Byte Address 0x1800
#else
    region[1].mask = 0x1ffffe0;
#endif
    region[1].c = 1;
    region[1].perm = MPU_INST_PERM_SUPER_EXEC_USER_EXEC;

    //Rest of the regions are maximally sized and permissive.
#ifdef NIOS2_MPU_REGION_USES_LIMIT
    mask = 0x2000000;
#else
    mask = 0x0;
#endif
    unsigned int num_of_region = NIOS2_MPU_NUM_INST_REGIONS;
    unsigned int index;
    for (index = 2; index < num_of_region; index++){
        region[index].base = 0x0;
        region[index].index = index;
        region[index].mask = mask;
        region[index].c = 0;
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        region[index].perm = MPU_INST_PERM_SUPER_NONE_USER_NONE;
    }
    nios2_mpu_load_region(region, num_of_region, 0);
}

The example below shows the function prototype for nios2_mpu_load_region().

Example 26. nios2_mpu_load_region()

void nios2_mpu_load_region (
    Nios2MPURegion region[],
    unsigned int num_of_region,
    unsigned int d);

The following list shows the arguments to nios2_mpu_load_region():

• Nios2MPURegion—An array of data structures, each representing an MPU region

• num_of_region—The number of regions

• d—The region type (instruction or data)

nios2_mpu_load_region() configures the MPU according to the arguments passed
by the calling function.

The MPU is disabled by default at system restart. After the MPU is configured, the
example uses nios2_mpu_enable() and nios2_mpu_disable() to enable and
disable the MPU. Whenever you reconfigure the MPU, you must first disable it, and re-
enable it after configuring.

The software examples accompanying this section are commented to help you
understand how each example works. Most of the complexity of managing the MPU
and its regions is embodied in the MPU utility functions and macros in mpu_utils.c
and mpu_utils.h, allowing you to focus on the top-level software flow.

4.3.3.2.2 Building the Software

To create and build a software example, execute the following steps:

1. Identify the directory containing the software example that you want to run, based
on the hardware example that you want to use. For example, to run the
mpu_basic software example on the MPU_Design_limit hardware design
example, the directory is <design examples>/MPU_Design_limit/
software_examples/app/ mpu_basic.

2. Use one of the following methods to open the Nios II Command Shell:
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• In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS <version>, and click Nios II <version> Command
Shell.

• In the Linux operating system, in a command shell, execute the following
commands:

cd $SOPC_KIT_NIOS2
./sdk_shell

3. Change directories to the software example directory identified in Step 1.

4. Type the following command:

./create-this-app

5. After the projects are generated and built, configure your board with the hardware
image and run the software with the following commands:

nios2-configure-sof -C ../../../
nios2-download -g <example>.elf && nios2-terminal

Each software example displays information on the screen. The output from the
mpu_basic example resembles the example below.

Example 27. mpu_basic Console Output

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Initializing CPU cache (if present)
OK
Downloaded 3KB in 0.0s
Verified OK
Starting processor at address 0x00010020
nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios II System!.
val1 = 0xfeedface, val2 = 0xfeedface, val3 = 0x@.

The output from the mpu_exc_detection example resembles mpu_exc_detection
Console Output on page 200.

mpu_exc_detection Console Output

Example 28. mpu_exc_detection Console Output

Using cable "USB-Blaster [USB-0]", device 1, instance 0x00
Pausing target processor: OK
Initializing CPU cache (if present)
OK
Downloaded 5KB in 0.0s
Verified OK
Starting processor at address 0x00010110
nios2-terminal: connected to hardware target using JTAG UART on cable
nios2-terminal: "USB-Blaster [USB-0]", device 1, instance 0
nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Hello from a simple MPU-Enabled Nios II System!.
    Starting some exceptions tests.
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=====
MPU NULL data pointer test.
MPU NULL data pointer test passed!
MPU wild pointer test.
MPU wild pointer test passed!
MPU stack overflow test.
MPU stack overflow test passed!
=====
    Exception Tests ended.
Now exiting program.

For further details, refer to the source code and the <design examples>/ReadMe.txt
file accompanying the examples.

If the software example appears to hang, verify that you have configured your board
with the correct .sof.
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4.4 Profiling Nios II Systems

This chapter describes the methods to measure the performance of a Nios II system
with the GNU profiler (nios2-elf-gprof), the performance counter component, and
the timestamp interval timer component. This chapter also includes two tutorials to
measure performance in the Intel Nios II Software Build Tools (SBT) development
flow.

The Nios II development environment provides several tools to analyze the
performance of your project. The software-only GNU profiler approach adds minimal
overhead. To analyze deterministic real-time performance issues, you can use a
hardware timer or a performance counter. To choose the best tool for your task,
consider the problem that you are solving.

4.4.1 Requirements

You must be familiar with the Nios II SBT development flow for Nios II systems,
including the Quartus Prime software and Qsys to use the tutorials.

4.4.1.1 Obtaining the Hardware Design

The tutorials in this chapter work with the Nios II Ethernet Standard Design Example.

To use the design example, unzip the .zip for your development kit to a working
directory on your system.

Note: This chapter refers the software example directory as <project_directory>.

4.4.1.2 Obtaining the Software Examples

To obtain the software examples for this chapter, follow these steps:

1. Download the profiler_software_examples.zip.

2. Unzip the profiler_software_examples.zip to <project_directory> in your
system.

Note: This chapter refers the directory as <profiler_software_examples>.

4.4.2 Tools

You can use the GNU profiler without making any hardware changes to your Nios II
system. This tool directs the compiler to add calls to profiler library functions into your
application code.

The performance counter component and the timestamp component are minimally
intrusive hardware methods for measuring the performance of a Nios II system. This
chapter describes and compares the two components. To use these methods, you add
the hardware components to your system, and you add macro invocations to your
source code to start and stop the components. The hardware components perform the
measurements.

Compiler speed optimizations affect functions to widely varying degrees. Compiler size
optimizations also affect functions in different ways. These differences impact the
cache usage and the resource contention, which can change the relative start times
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and therefore increase the execution times of functions. For these reasons, you must
optimize your code with the -O3 compiler switch, and then perform profiling on the
code to gain the most insight on how to improve an application in its final form.

The tutorials use three tools to measure the performance of a Nios II system, as
described in the following sections:

• GNU Profiler

• Intel Performance Counter

• High-Resolution Timer

In addition, the program counter trace collection tool is available for some Nios II
processors. However, the tutorials do not use this tool.

You use the GNU profiler to identify the areas of code that consume the most CPU
time, and a performance counter or a timer component to analyze functional
bottlenecks.

4.4.2.1 GNU Profiler

You must make minimal changes to the source code to take measurements for
analysis with the GNU profiler. To implement the required changes, follow these steps:

1. In the Nios II SBT, enable the GNU profiler in your project by turning on the
hal.enable_gprof and hal.enable_exit board support package (BSP)
settings.

Note: If you use the Nios II SBT for Eclipse, the software enables
hal.enable_exit by default.

2. Verify that your main() function returns.

Note: When main() calls return() or terminates, alt_main() calls exit() as
appropriate for profiling. The exit() function runs the BREAK 2
instruction, which causes the profiling data to write to the gmon.out on the
host computer.

3. Rebuild the BSP and the application project.

4.4.2.2 Intel Performance Counter

A performance counter is a block of counters in the hardware that measures the
execution time of the code sections that you choose. A performance counter
component can track up to seven code sections. By default, the component tracks
three code sections. A pair of counters tracks each code section:

• Time—A 64-bit time (clock tick) counter that counts the number of clock ticks
during code section runs.

• Occurrences—A 32-bit event counter that counts the number of times the code
section runs.

Note: You can change the maximum number of measured code sections by editing the
performance counter component in Qsys.

These counters enable you to measure the execution time of the designated sections
of C/C++ code. Macros enable you to mark the start and the end of the code sections
in your program. The performance counter component has up to seven pairs of
counters, supporting as many as seven measured sections of C/C++ code. You must
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add macros to your code at the start and end of each measured section. An additional,
built-in pair of counters aggregates the individual code section counters, enabling you
to measure each section as a fraction of a larger program.

You can use performance counters for analyzing determinism and other runtime
issues.

Note: The performance counter component occupies a substantial number of logic elements
(LEs) on your device, and requires software implementation to obtain performance
measurements.

4.4.2.3 High-Resolution Timer

A high-resolution timer, in contrast to a performance counter component, does not use
a large number of LEs on your device, and does not require heavy implementation of
every function call in your code to obtain performance measurements. Timers require
explicit read calls in the sections of the source code that you want to measure, so their
use is better suited for pinpointing the performance issues in a program. You must
implement the source code manually; however, because this implementation is less
pervasive, therefore, this implementation is also less intrusive. Unlike the performance
counter macros, the timer requires many more processor cycles to make two function
calls; one to read the time at the beginning of a measured section, and one to read
the time at the end.

4.4.2.4 Program Counter Trace Information

The Nios II processor can generate complete and accurate program counter trace
information. However, the GNU profiler does not use this information. To generate this
information, you must have a Nios II processor configured with a JTAG debug module
of level 3 or greater. The level 3 JTAG debug module creates on-chip trace data. You
can capture approximately a dozen instructions in the on-chip trace buffer.

You can obtain a much larger trace by configuring a Nios II core with a level 4 JTAG
debug module to generate off-chip trace information; however, you need a First Silicon
Solutions, Inc. (FS2) or Lauterbach Datentechnik GmBH (Lauterbach)
(www.lauterbach.com) hardware to collect this off-chip trace data.

For more information about the Lauterbach hardware, refer to the “Debuggers” section
in the Debugging Nios II Designs chapter.

4.4.3 Using the GNU Profiler to Measure Code Performance

The following sections explain the advantages and limitations of using the GNU profiler
for performance analysis. A tutorial demonstrates the use of the GNU profiler to collect
and analyze performance data.

4.4.3.1 GNU Profiler Advantages

The major advantage to measuring performance with the GNU profiler is that the GNU
profiler provides an overview of the entire system. Although the GNU profiler adds
some overhead, the GNU profiler distributes this overhead throughout the system
evenly. The functions the GNU profiler identifies as consuming the most processor
time also consume the most processor time when you run the application at full speed
without profiler implementation.
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4.4.3.2 GNU Profiler Limitations

Adding instructions to each function call for use by the GNU profiler affects the
behavior of the code in the following ways:

• Each function is slightly larger due to the additional function call to collect profiling
information.

• The entry and the exit time of each function due to profiling information collection.

• The instruction-cache misses are higher because the profiling function is in the
instruction cache memory.

• Memory that records the profiling data can change the behavior of the data cache.

These effects can mask the time sensitive issues that you are trying to uncover
through profiling.

The GNU profiler determines the percentage of time spent in each function by
interpolation, based on periodic samplings of the program counter. The GNU profiler
ties the periodic samples to the timer tick of the system clock. The GNU profiler can
take samples only when you enable interrupts, and therefore cannot record the
processor cycles spent in interrupt routines.

The GNU profiler cannot profile individual functions. You can use the GNU profiler to
profile the entire system, or not at all.

The profiling data is a sampling of the program counter at the resolution of the system
timer tick. Therefore, the profiling data provides estimation, not an exact
representation, of the processor time spent in different functions. You can improve the
statistical significance of the sampling by increasing the frequency of the system timer
tick. However, increasing the frequency of the tick increases the time spent recording
samples, which in turn affects the integrity of the measurement.

Note: To use the GNU profiler successfully with your custom hardware design, you must
ensure that your design includes a system clock timer. The GNU profiler requires this
component to produce proper output.

4.4.3.3 Software Considerations

The GNU profiler implements your source code with functions to track processor
usage.

4.4.3.3.1 Profiler Mechanics

You enable the GNU profiler by turning on the hal.enable_gprof switch in the scripts to
generate the BSP. Turning on this switch automatically turns on the -pg compiler
switch and then links the profiling library code in the altera_nios2 software component
with the BSP. This code counts the number of calls to each profiled function.

The -pg compiler option forces the compiler to insert a call to the mcount() function
(located in the file altera_nios2/HAL/src/alt_mcount.S) at the beginning of
every function call. The calls to mcount() track every dynamic parent and child
function call relationship to enable the construction of a call graph. The option also
installs nios2_pcsample()function (located in the file altera_nios2/HAL/src/
alt_gmon.c) that samples the foreground program counter at every system clock
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interrupt. When the program executes, the GNU profiler collects data on the host of
the gmon.out. The nios2-elf-gprof utility can read this file and display profiling
information about the program.

The profiling code operates on the target by performing the following steps:

1. The Compiler implements function prologues with a call to mcount() to enable
the Compiler to determine the function call graph. The GNU profiler documentation
refers to this data as the function call arc data.

2. The timer interrupt handler registers an alarm to capture information about the
foreground function (histogram data) that executes when the alarm triggers.

3. The heap allocates a target memory to store the profiling data.

4. When your code exits with a BREAK 2 instruction, the nios2-download utility
copies the profiling data from the target to the host.

The nios2-elf-gprof utility requires the function call arc data and the histogram data
to work correctly.

Note: For more information about the GNU profiler, refer to the Nios II GNU profiler
documentation, included with the GCC documentation, available on the Nios II
Embedded Design Suite Support page of the Intel website.

4.4.3.3.2 Profiler Overhead

Using the GNU profiler impacts memory and processor cycles.

Memory

The impact of the profiling information on the .text section size is proportional to the
number of small functions in the application. The code overhead—the size of
the .text section—increases when the GNU profiler enables profiling, due to the
addition of the nios2_pcsample() and mcount() functions. The GNU profiler
implements the system timer with a call to nios2_pcsample(), and implements
every function with a call to mcount(). The .text section increases by the additional
function calls and by the sizes of these two functions.

To view the impact on the .text section, you can compare the sizes of the .text
sections in the .objdump.

The GNU profiler uses buckets to store data on the heap during profiling. Each bucket
is two bytes in size. Each bucket holds samples for 32 bytes of code in the .text
section. The total number of profiler buckets allocated from the heap is when you
divide the size of the .text section by 32. The heap memory that the GNU profiler
buckets consume is therefore:

((.text section size) / 32) × 2 bytes

The GNU profiler measures all functions in the object code that the GNU profiler
compiles with profiling information. This set of functions includes the library functions,
which include the run-time library and the BSP.
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Processor Cycles

The GNU profiler tracks each individual function with a call to mcount(). Therefore, if
the application code contains many small functions, the impact of the GNU profiler on
processor time is larger. However, the resolution of the profiled data is higher. To
calculate the additional processor time consumed by profiling with mcount(), multiply
the amount of time that the processor requires to execute mcount() by the number
of run-time function calls in your application run.

On every clock tick, the processor calls the nios2_pcsample() function. To calculate
the required additional processor time to perform profiling with nios2_pcsample(),
multiply the time the processor requires to execute this function by the number of
clock ticks that your application requires, which includes the time the mcount() calls
and execution requires.

To calculate the number of additional processor cycles used for profiling, add the
overhead you calculated for all the calls to mcount() to the overhead you calculated
for all the calls to nios2_pcsample().

4.4.3.4 Hardware Considerations

The GNU profiler requires only a system timer. If your Nios II hardware design
includes a system timer, you do not need to change your design.

4.4.3.5 Tutorial: Using the GNU Profiler

For demonstration purposes, this tutorial uses the Nios II Ethernet Standard design
example for the Nios II Embedded Evaluation Kit, Cyclone III Edition (NEEK)
development kit. You could use other similar design examples which target your
development kit.

To configure your device with the design example, follow these steps:

1. Start the Quartus Prime software.

2. On the File menu, click Open Project.

3. Open niosii_ethernet_standard_3c25.qpf.

4. On the Tools menu, click Programmer.

5. Click Start to download the SRAM Object File (.sof) to your device.

Note: If the software disabled the Start button, or the Hardware Setup field does not list
the USB-Blaster cable, refer to the Introduction to the Quartus Software manual for
more details on the Programmer tool.

4.4.3.5.1 Profiler Example with the Nios II Command Line

Creating the Profiler Software Example

To create the profiler_gnu software project in the Nios II command-line flow, follow
these steps:

1. Open a Nios II command shell by executing one of the following steps, depending
on your environment:
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• In the Windows operating system, on the Start menu, point to Programs >
Altera > Nios II EDS <version>, and click Nios II <version>
Command Shell.

• In the Linux operating system, in a command shell, change directories to
<Nios II EDS install path>, and type the command ./sdk_shell.

2. Change to the directory <profiler_software_examples>/app/profiler_gnu

3. Create and build the application with the create-this-app script, by typing the
following command:

./create-this-app

The create-this-app script runs the create-this-bsp script, which reads settings
from the parameter_definition.tcl in <profiler_software_examples>/bsp/
hal_profiler_gnu. This Tcl file contains the following lines:
set_setting hal.enable_gprof true

set_setting hal.enable_exit true

The first setting enables the GNU profiler, and the second setting enables the
alt_main() function to call exit() following main().

Running the Profiler Software Example

To run the application and collect the GNU profiler data, follow these steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal

3. In your original Nios II command shell, download the .elf to the development
board, run your design, and write the GNU profiler data to the gmon.out, by
typing the following command:

nios2-download -g --write-gmon gmon.out *.elf

The GNU profiler collects data while the application runs, and then writes the data
to the gmon.out when the application calls the exit() function. The figure below
shows an example of the GNU profiler output in the Nios II command shell.

4. Exit nios2-terminal by typing control-C.
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Figure 45. GNU Profiler Output on Nios II Command Shell

Creating the GNU Profiler Report

When you run your project, your project creates the gmon.out. You must format this
file to a readable format. To format this file, follow these steps:

1. In the original Nios II command shell, change your directory to
<profiler_software_examples>/app/profiler_gnu.

2. Type the following command:

nios2-elf-gprof profiler_gnu.elf gmon.out > report.txt

3. Use any text editor to view the report.txt.

For more information about the GNU profiler report, refer to “Analyzing the GNU
Profiler Report”.

4.4.3.5.2 Profiler Example with Nios II SBT for Eclipse

Creating and Running the Profiler Software Example

1. Start the Nios II SBT for Eclipse.

2. Under File menu, point to New, and click Nios II Application and BSP from
template.

3. Set Qsys Information File name by browsing to locate the Qsys Information File
(.sopcinfo) in <project_directory>.

4. Name your project, such as profiler_gnu.

5. Under Templates, select Blank Project.

6. Click Finish to create your new project.

7. Locate the <profiler_software_examples>/eclipse_source_files/profiler_gnu
folder and copy all the files in this directory. In Nios II SBT for Eclipse, right click
on profiler_gnu in Project Explorer view and select Paste.

8. Right click your project in the Project Explorer view, point to Nios II and click
BSP Editor.
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9. In the Nios II BSP Editor, turn on hal.enable_gprof to enable the GNU profiler
in your project.

10. Generate your BSP project and exit.

11. Right click your project in the Project Explorer view and then click Build Project.

12. To download and run the profiler_gnu software, right click your project, point to
Run As, and then click Nios II Hardware.

Figure 46. Nios II Console After Running profiler_gnu

Viewing the GNU Profiler Report

The software creates the gmon.out in your project folder, which you can view in the
Project Explorer view of the Nios II SBT for Eclipse. If the gmon.out does not appear,
right click on your project and select Refresh. When you open gmon.out, the Nios II
SBT for Eclipse switches to the Profiling view, in which you can view the report. For
more information about the GNU profiler report, refer to “Analyzing the GNU Profiler
Report”.

4.4.3.5.3 Analyzing the GNU Profiler Report

The information in this section is applicable to the GNU profiler report that the
command line or the Nios II SBT for Eclipse generates.

The GNU profiler report contains information in the following formats:

• The flat profile portion of the report identifies the child functions in the order in
which they consume processing time.

• The call graph portion of the report describes the call tree of the program sorted
by the total amount of time spent in each function and its children. Each entry in
this table consists of several lines. The line with the index number at the left hand
margin lists the current function. The lines above it list the functions that called
this function, and the lines below it list the functions this one called, with
exceptions and conditions detailed further in the report itself and the GNU profiler
documentation.

Note: For more information, refer to the Nios II GNU profiler documentation, with the GCC
documentation, available at the Nios II Embedded Design Suite Support page.

The example below shows the GNU profiler report excerpts from the previous tutorial.
In the example, the flat profile shows that the checksum_test_routine() function
call consumed 79.19% of the processing time during the execution.
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The granularity statement in the call graph report states that the report covers 2.55
seconds (2550 milliseconds). The Nios II timer (sys_clk_timer) has a 10
millisecond timer. The GNU profiler calls the timer interrupt once at the beginning,
before a full clock period elapsed, and once every 10 milliseconds thereafter. A precise
report, therefore, would show that the GNU profiler calls the timer interrupt handler
255 times. Index[13] shows that the GNU profiler calls
alt_avalon_timer_sc_irq() 256 times, which is in the precision range of this
measurement method.

Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative    self           self     total
time    seconds   seconds   calls  s/call   s/call   name
79.19       2.02     2.02       1    2.02    2.03    checksum_test_routine
18.01       2.48     0.46       1    0.46    0.46    alt_busy_sleep
    .
    .
    .
        Call graph (explanation follows)

granularity: each sample hit covers 32 byte(s) for 0.39% of 2.55 seconds

index     % time    self  children called   name
            0.00   0.00       273/273      alt_irq_entry [106]
[13]   0.0    0.00   0.00          273       alt_irq_handler [13]
            0.00   0.00       256/256      alt_avalon_timer_sc_irq [14]
            0.00   0.00        17/17       altera_avalon_jtag_uart_irq [17]
    .
    .
    .

4.4.4 Using Performance Counter and Timer Components

After the GNU profiler identifies areas of code that consume the most processor time,
a performance counter or a timer component can further analyze these functional
bottlenecks.

The following sections describe the advantages and limitations of using performance
counters and timers for performance analysis. A tutorial demonstrates the use of
performance counters and timers to collect and analyze performance data.

4.4.4.1 Performance Counter Advantages

Performance counters are the only mechanism available with the Nios II development
kits that provide measurements with little intrusion. You can use efficient macros to
start and stop the measurement for each measured section. A performance counter is
an order of magnitude faster than the GNU profiler. The only less intrusive way to
collect measurement data would be a completely hardware-based solution, such as a
logic analyzer configured with triggers on particular bus addresses.

4.4.4.2 Timer Advantages

Unlike the performance counter, which can track only seven sections of code
simultaneously, the timer has no such limit. You can read the timer 1,000 times and
store the timer in 1,000 different variables as a start time for a section. Then, you can
compare the timer to 1,000 end timer readings. The only practical limiting factors are
memory consumption, processor overhead, and complexity.
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4.4.4.3 Performance Counter and Timer Hardware Considerations

One disadvantage to measuring performance with a performance counter is the size of
the counter. The performance counter component consumes a large number of LEs on
your device.

On a 3C120 device, a single performance counter component with three section
counters defined in a modified standard hardware design consumes 671 logic cells
(LCs), and 420 LC registers. In the same design, a single performance counter defined
with seven section counters consumes 1339 logic cells and 808 LC registers. The
resource usage of the performance counter component is nearly identical on all
devices.

Note: Remove the performance counter from the final version of your system to save
resources.

The timer consumes hardware resources, although substantially less than a
performance counter. The timer also introduces an additional interrupt source in the
system that impacts interrupt latency.

Note: Adding performance counters and timers can reduce fMAX.

4.4.4.4 Performance Counter and Timer Software Considerations

A common disadvantage of performance counters and timers is the lack of context
awareness. If a timer interrupt occurs during the measurement of a section of code,
performance counters and timers add the time taken by the processor to process the
timer interrupt to the total measurement time. This effect occurs for simple interrupts
and multithreading context switching, although this effect occurs more in a
multithreaded system. Many threads or interrupt service routines might execute while
you measure the section of code, resulting in a very large, skewed measurement. The
resulting measurement distortion is unpredictable, and has no correlation with the
behavior of the code section you are attempting to measure.

To avoid context switch impacts, most multithreaded operating systems have a system
call to temporarily lock the scheduler. Alternatively, you can disable interrupts to avoid
context switches during section measurement.

Note: Disabling interrupts or locking the scheduler affects the behavior of your system, so
you must use these techniques only as a last resort.

4.4.4.5 Performance Counter Software Considerations

You must use the PERF_BEGIN and PERF_END performance counter macros to record
the beginning and ending times of each measured section.

PERF_BEGIN and PERF_END are single writes to the performance counter component.
These macros are very efficient, requiring only two or three machine instructions.
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The example below shows the PERF_BEGIN and PERF_END performance counter
macros in altera_avalon_performance_counter.h:

Example 29. PERF_BEGIN and PERF_END Performance Counter Macros in
altera_avalon_performance_counter.h

#define PERF_BEGIN(p,n) IOWR((p),(((n)*4)+1),0)

#define PERF_END(p,n) IOWR((p),(((n)*4) ),0)

4.4.4.6 The Global Counter

The performance counter component contains several counters. You can configure the
number of measured sections in Qsys. You have one pair of counters for each
measured section, as described in “Altera Performance Counter” section. In addition,
the performance counter component always has a global counter.

The global counter measures the total time of the measurement. When you stop the
global counter, other counters do not run. The PERF_START_MEASURING and
PERF_STOP_MEASURING macros control the global counter.

Warning: Do not attempt to manipulate the global counter in any other way.

For more information about performance counters, refer to the Performance Counter
Core chapter in the Embedded Peripherals IP User Guide.

4.4.4.7 Hardware Considerations

Performance counters and timestamp interval timers are Qsys components. When you
add one to an existing system, you must regenerate the Qsys system and recompile
the .sof in the Quartus Prime software. Timers and performance counters can
eventually overflow, such as any hardware counter.

4.4.4.8 Tutorial: Using Performance Counters and Timers

This tutorial demonstrates the use of performance counters and timestamp interval
timers to measure the performance of a Nios II system more precisely than is possible
with the GNU profiler, by identifying the sections of code that use the most processor
time.

This tutorial uses the same NEEK design as the GNU profiler tutorial. This design has
an interval timer and a performance counter. You can change the timer interval and
the number of sections that the performance counter measures.

4.4.4.8.1 Modifying the Nios II Hardware Design

You must modify the Nios II Ethernet Standard design example for this tutorial. To
modify the Nios II Ethernet Standard design example, follow these steps:

1. In Quartus Prime software, on the Tools menu, click Qsys.

2. In <project_directory>, click peripheral_system.qsys.

3. Right click the high_res_timer module and then click Edit.

4. Under Timeout period, set the interval time Period to 1 and the units to us
(microseconds).
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5. Click Finish.

6. On the File menu, click Save.

7. The Nios II Ethernet Standard design example is a hierarchal based design. To
generate the system, on the File menu, click Open, and then select
eth_std_main_system.qsys.

8. Click the Generation tab.

9. Turn on the Create HDL design files for synthesis and Create block symbol
file (.bsf) options.

10. Ensure that the Output Directory path is <project_directory>/
eth_std_main_system.

11. Click Generate. Save the system if the software prompts you to do so.

12. Exit Qsys when generation is complete.

13. To generate the .sof, in the Quartus Prime software, on the Processing menu, click
Start Compilation.

14. Click OK when the following message appears:

Full Compilation was successful

4.4.4.8.2 Programming the Hardware Design to Your Device

After compiling your modified hardware design, you can program the hardware design
to your device. To do so, follow these steps:

1. On the Tools menu, click Programmer.

2. Click Start to download the .sof to your device.

If the software disables the Start button, or the Hardware Setup field does not
list the USB-Blaster cable, refer to the Introduction to the Quartus Software
manual for more details on the Programmer tool.

4.4.4.8.3 Performance Counter Example with the Nios II Command Line

This section describes how to create and run the performance counter software
example with the Nios II command line.

Creating the Performance Counter Software Example

To create the profiler_performance_counter software project in the Nios II
software build flow, follow these steps:

1. Open a Nios II command shell as described in “Creating the Profiler Software
Example”.

2. Change to the <profiler_software_examples>/app/
profiler_performance_counter directory.

3. Create and build the application by typing the following command:

./create-this-app
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The create-this-app script runs the create-this-bsp script, which reads settings
from the parameter_definition.tcl in <profiler_software_examples>/bsp/
hal_profiler_performance_counter. This Tcl file contains the following
lines:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer peripheral_subsystem_high_res_timer
set_setting hal.enable_gprof true
set_setting hal.enable_exit true

The first two lines set the system clock timer and timestamp timer to the
corresponding timers in the Qsys system.

The third line enables the GNU profiler, and the last line enable the alt_main()
function to call exit() following main().

Running the Performance Counter Software Example

To run the application and collect the GNU profiler data, follow these steps:

1. Open a second Nios II command shell.

2. In the second shell, open a nios2-terminal session by typing the following
command:

nios2-terminal

3. In your original Nios II command shell, run the program by typing the following
command:

nios2-download -g *.elf

The figure below shows an example of the output that appears in the Nios II
command shell. Your output might vary. For more information, refer to “Analyzing
the Performance Counter Report”.

Figure 47. Performance Counter Report on Nios II Command Shell
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4.4.4.8.4 Performance Counter Example with Nios II SBT for Eclipse

This section describes how to create and run the profiler_performance_counter
software example with the Nios II SBT for Eclipse.

1. Start the Nios II SBT for Eclipse.

2. Under File menu, point to New, and click Nios II Application and BSP from
template.

3. Set Qsys Information File name by browsing to the <project_directory>
directory and selecting the .sopcinfo.

4. Give your project a name, for example profiler_performance_counter.

5. Under Templates, select Blank Project.

6. Click Finish to create your new project.

7. Locate the <profiler_software_examples>/eclipse_source_files/
profiler_performance_counter folder, and copy all the files in this directory. In
Nios II SBT for Eclipse, right click on profiler_gnu in Project Explorer view and
select Paste.

8. Right click your project in the Project Explorer view, point to Nios II and click
BSP Editor.

9. In the Nios II BSP Editor, turn on hal.enable_gprof to enable the GNU profiler
in your project.

10. Set the hal.sys_clk_timer to the peripheral_subsystem_sys_clk_timer
component.

11. Set hal.timestamp_timer to the peripheral_subsystem_high_res_timer
component.

12. Generate your BSP project and exit.

13. Right click your project in the Project Explorer view, point to Build Project.

14. To run the profiler_performance_counter software, right click your application
project, point to Run As and click Nios II Hardware.

The figure below shows the Nios II Console output after running
profiler_performance_counter. The data are similar to the command-line example
in Figure 47 on page 215. For more information, refer to “Analyzing the Performance
Counter Report”.
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Figure 48. Performance Counter Report on Nios II Console

4.4.4.8.5 Analyzing the Performance Counter Report

The information in this section is applicable to the performance counter report that the
command line or the Nios II SBT for Eclipse generates.

pc_overhead is the performance counter component overhead due to a single call to
the PERF_BEGIN macro. This number includes the overhead of executing the
PERF_BEGIN macro and the corresponding PERF_END macro for this measured
section.

ts_overhead is the timestamp overhead—the overhead of a single function call to
read the timer. This number includes the performance counter overhead to implement
the measurement.

4.4.5 Troubleshooting

The following sections describe several problems that might occur, and suggest ways
to troubleshoot the problems.

4.4.5.1 nios2-elf-gprof –annotated-source Switch Has No Effect

The profiler does not track the basic-block-count information, so switches (such
as the –annotated-source switch) do not work.

4.4.5.2 Writing to the Registers of a Nonexistent Section Counter

The performance counter report in the example below shows what happens when you
attempt to use a nonexistent section counter of the performance counter component.

Example 30. Result of Using a Nonexistent Section Counter

--Performance Counter Report--
Total Time: 5.78751 seconds (289375582 clock-cycles)
+--------------------+--------+-------------+---------------+-----------+
|     Section      |   %    | Time (sec)  | Time (clocks) |Occurrences|
+--------------------+--------+-------------+---------------+-----------+
|sleep_tests        |    49.4|      2.86162|      143081026|          1|
+--------------------+--------+-------------+---------------+-----------+
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|perf_begin_overhead | 7.6e-06|      0.00000|             22|          1|
+--------------------+--------+-------------+---------------+-----------+
|timestamp_overhead  | 7.6e-06|      0.00000|             22|          1|
+--------------------+--------+-------------+---------------+-----------+
|non_existent_counter|6.37e+12|368934881474.19104|        -1| 4294967295|
+--------------------+--------+-------------+---------------+-----------+

Assume a fourth section counter specifies a performance counter component that Qsys
defines to have three section counters only (the default value).

In the example, the test is performed on a hardware design that does not have any
other component defined with registers mapped immediately after the registers of the
performance counter component. Therefore, there is no impact to other component.
Depending on how you configure the component register base addresses in Qsys for a
particular hardware design, unpredictable system behavior could occur.

4.4.5.3 Output From a printf() or perf_print_formatted_output() Call Near the
End

This issue occurs when the Nios II application executes a BREAK instruction to transfer
profiling data to the development workstation during the exit() or return() from
main().

As a workaround, call usleep(500000) before exiting or returning from main().
This call creates an adequate delay for you to transmit the I/O to the JTAG UART
before main returns (or calls exit()). If the output is still partially truncated,
increase the delay value passed to usleep(). Use #include <unistd.h> for the
usleep() function prototype.

4.4.5.4 Fitting a Performance Counter in a Hardware Design That Consumes Most

During development, you can measure the system in a larger device than the size of
your device in a deployed system.

Configure a performance counter to have only one section counter to save the most
resources.

4.4.5.5 The Histogram for the gmon.out File Is Missing, Even Though My main()

If you do not define a system timer for the system, the profiler does not call the
nios2_pcsample() function, and does not generate the histogram for the
gmon.out. Define a system timer for your system.
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4.5 Document Revision History

Table 29. Software System Design with a Nios II Processor Chapter Revision History

Date Version Changes

June 2017 2017.06.12 Section added:
• Profiling Nios II Systems on page 202

December 2016 2016.12.19 Initial release.
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5 Nios II Configuration and Booting Solutions
The Nios II processor is a soft processor that supports all System on Chip (SoC) and
Field Programmable Gate Array (FPGA) families.

This chapter describes the various boot or software execution options available with
the Nios II processor. You can configure the Nios II processor to boot and execute
software from different memory locations. The boot memory could be the Common
Flash Interface (CFI) flash, User Flash Memory (UFM) flash in MAX 10, Altera Serial
Flash (EPCS)/Altera Quad Serial Flash (EPCQ) configuration device, Quad Serial
Parallel Interface (QSPI) flash or On-Chip RAM (OCRAM).
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5.1 Configuration

Many FPGA configuration options are available to you. The two most commonly used
options configure the FPGA from flash memory. One option uses a CPLD and a CFI
flash device to configure the FPGA, and the other uses a serial flash EPCS
configuration device. The Nios II development kits use these two configuration options
by default.

Choose the first option, which uses a CPLD and a CFI-compliant flash memory, in the
following cases:

• Your FPGA is large

• You must configure multiple FPGAs

• You require a large amount of flash memory for software storage

• Your design requires multiple FPGA hardware images (safe factory images and
user images) or multiple software images

EPCS configuration devices are often used to configure small, single-FPGA systems.

Note: The default Nios II boot loader does not support multiple FPGA images in EPCS
devices.

For help in configuring your particular device, refer to the device family information on
the Intel Products page of the Intel website.

The figure below shows the block diagram of the configuration controller used on the
Nios II Development Kit, Cyclone II Edition. This controller design is used on older
development kits, and is a good starting point for your design.

Figure 49. Configuration Controller for Cyclone II Devices
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For more information about controller designs, refer to AN346: Using the Nios II
Configuration Controller Reference Designs.

5 Nios II Configuration and Booting Solutions

Embedded Design Handbook
221



Related Links

Using the Nios II Configuration Controller Reference Designs
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5.2 Booting

Many Nios II booting options are available. The following options are the most
commonly used:

• Boot from CFI Flash

• Boot from EPCS

• Boot from on-chip RAM

The default boot loader that is included in the Nios II EDS supports boot from CFI
flash memory and from EPCS flash memory. If you use an on-chip RAM that supports
initialization, such as the M4K and M9K types of RAM, you can boot from the on-chip
RAM without a boot loader.

For additional information about Nios II boot methodologies, refer to AN458:
Alternative Nios II Boot Methods.

Related Links

• Alternative Nios II Boot Methods

• Generic Nios II Booting Methods User Guide

• AN736: Nios II Processor Booting From Altera Serial Flash (EPCQ)

• AN730: Nios II Processor Booting Methods in MAX 10 FPGA Devices
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5.3 Application Boot Loading and Programming System Memory

Most Nios II systems require some method to configure the hardware and software
images in system memory before the processor can begin executing your application
program. This section describes various possible memory topologies for your system
(both volatile and non-volatile), their use, their requirements, and their configuration.
The Nios II software application requires a boot loader application to configure the
system memory if the system software is stored in flash memory, but is configured to
run from volatile memory. If the Nios II processor is running from flash memory—
the .text section is in flash memory—a copy routine, rather than a boot loader, loads
the other program sections to volatile memory. In some cases, such as when your
system application occupies internal FPGA memory, or is preloaded into external
memory by another processor, no configuration of the system memory is required.

Related Links

• Nios II Processor Booting From Altera Serial Flash (EPCQ)

• EPCS to EPCQ Migration Guideline

• AN736: Nios II Processor Booting Methods in MAX 10 FPGA Devices

• Alternative Nios II Boot Methods

5.3.1 Default BSP Boot Loading Configuration

The nios2-bsp script determines whether the system requires a boot loader and
whether to enable the copying of the default sections.

By default, the nios2-bsp script makes these decisions using the following rules:

• Boot loader—The nios2-bsp script assumes that a boot loader is being used if
the following conditions are met:

— The Nios II processor's reset address is not in the .text section.

— The Nios II processor's reset address is in flash memory.

• Copying default sections—The nios2-bsp script enables the copying of the
default volatile sections if the Nios II processor's reset address is set to an address
in the .text section.

If the default boot loader behavior is appropriate for your system, you do not need to
intervene in the boot loading process.

5.3.2 Boot Configuration Options

You can modify the default nios2-bsp script behavior for application loading by using
the following settings:

• hal.linker.allow_code_at_reset

• hal.linker.enable_alt_load

• hal.linker.enable_alt_load_copy_rwdata

• hal.linker.enable_alt_load_copy_exceptions

• hal.linker.enable_alt_load_copy_rodata
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If you enable these settings, you can override the BSP's default behavior for boot
loading. You can modify the application loading behavior in the Settings tab of the
Nios II BSP Editor.

Alternatively, you can list the settings in a Tcl script that you import to the BSP Editor.

For information about using an imported Tcl script, refer to “Using Tcl Scripts with the
Nios II BSP Editor”.

These settings are created in the settings.bsp configuration file whether or not you
override the default BSP generation behavior. However, you may override their default
values.

For more information about BSP configuration settings, refer to the “Settings Managed
by the Software Build Tools” section in the Nios II Software Build Tools Reference
chapter of the Nios II Gen2 Software Developer's Handbook. For more information
about boot loading options and for advanced boot loader examples, refer to AN458:
Alternative Nios II Boot Methods.

Related Links

• Nios II Software Build Tools Reference

• Alternative Nios II Boot Methods

• Using Tcl Scripts with the Nios II BSP Editor on page 151

5.3.2.1 Booting and Running From Flash Memory

If your program is loaded in and runs from flash memory, the application's .text
section is not copied. However, during C run-time initialization—execution of the crt0
code block—some of the other code sections may be copied to volatile memory in
preparation for running the application.

For more information about the behavior of the crt0 code, refer to “crt0 Initialization”.

Intel recommends that you avoid this configuration during the normal development
cycle because downloading the compiled application requires reprogramming the flash
memory. In addition, software breakpoint capabilities require that hardware
breakpoints be enabled for the Nios II processor when using this configuration.

Prepare for BSP configuration by following these steps to configure your application to
boot and run from flash memory:

1. Nios II processor reset address—Ensure that the Nios II processor's reset
address is in flash memory. Configure the reset address and flash memory
addresses in Qsys.

2. Text section linker setting—Ensure that the .text section maps to the flash
memory address region. You can examine and modify section mappings in the
Linker Script tab in the BSP Editor. Alternatively, use the following Tcl command:

add_section_mapping .text ext_flash

3. Other sections linker setting—Ensure that all of the other sections, with the
possible exception of the .rodata section, are mapped to volatile memory
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Configure the BSP settings as shown
in the table below.
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Table 30. BSP Settings to Boot and Run from Flash Memory

BSP Setting Name Value

hal.linker.allow_code_at_reset 1

hal.linker.enable_alt_load 1

hal.linker.enable_alt_load_copy_rwdata 1

hal.linker.enable_alt_load_copy_exceptions 1

hal.linker.enable_alt_load_copy_rodata 1

If your application contains custom memory sections, you must manually load the
custom sections. Use the alt_load_section() HAL library function to ensure that
these sections are loaded before your program runs.

The HAL BSP library disables the flash memory write capability to prevent accidental
overwrite of the application image.

Related Links

• crt0 Initialization on page 163

• AN736: Nios II Processor Booting Methods in MAX 10 FPGA Devices

5.3.2.2 Booting From Flash Memory and Running From Volatile Memory

If your application image is stored in flash memory, but executes from volatile
memory with assistance from a boot loader program, prepare for BSP configuration by
following these steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset
address is an address in flash memory. Configure this option using Qsys.

2. Text section linker setting—Ensure that the .text section maps to a volatile
region of system memory, and not to the flash memory.

3. Other sections linker setting—Ensure that all of the other sections, with the
possible exception of the .rodata section, are mapped to volatile memory
regions. The .rodata section can map to a flash-memory region.

4. HAL C run-time configuration settings—Configure the BSP settings as shown
in the table below.

Table 31. BSP Settings to Boot from Flash Memory and Run from Volatile Memory

BSP Setting Name Value

hal.linker.allow_code_at_reset 0

hal.linker.enable_alt_load 0

hal.linker.enable_alt_load_copy_rwdata 0

hal.linker.enable_alt_load_copy_exceptions 0

hal.linker.enable_alt_load_copy_rodata 0
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5.3.2.3 Booting and Running From Volatile Memory

This configuration is use in cases where the Nios II processor's memory is loaded
externally by another processor or interconnect switch fabric master port. In this case,
prepare for BSP configuration by performing the same steps as in “Booting From Flash
Memory and Running From Volatile Memory”, except that the Nios II processor reset
address should be changed to the memory that holds the code that the processor
executes initially. Prepare for BSP configuration by following these steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset
address is in volatile memory. Configure this option using Qsys.

2. Text section linker setting—Ensure that the .text section maps to the reset
address memory.

3. Other sections linker setting—Ensure that all of the other sections, including
the .rodata section, also map to the reset address memory.

4. HAL C run-time configuration settings—Configure the BSP settings as shown
in the table below.

Table 32. BSP Settings to Boot and Run from Volatile Memory

BSP Setting Name Value

hal.linker.allow_code_at_reset 1

hal.linker.enable_alt_load 0

hal.linker.enable_alt_load_copy_rwdata 0

hal.linker.enable_alt_load_copy_exceptions 0

hal.linker.enable_alt_load_copy_rodata 0

This type of boot loading and sequencing requires additional supporting hardware
modifications, which are beyond the scope of this section.

Related Links

Booting From Flash Memory and Running From Volatile Memory on page 226

5.3.2.4 Booting From Intel EPCS Memory and Running From Volatile Memory

This configuration is a special case of the configuration described in “Booting From
Flash Memory and Running From Volatile Memory”. However, in this configuration, the
processor does not perform the initial boot loading operation. The EPCS flash memory
stores the FPGA hardware image and the application image. During system power up,
the FPGA configures itself from EPCS memory. Then the Nios II processor resets
control to a small FPGA memory resource in the EPCS memory controller, and
executes a small boot loader application that copies the application from EPCS
memory to the application’s run-time location.
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To make this configuration work, you must instantiate the EPCS device controller core
in your system hardware. Add the component using Qsys.

Prepare for BSP configuration by following these steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset
address is in the EPCS memory controller. Configure this option using Qsys.

2. Text section linker setting—Ensure that the .text section maps to a volatile
region of system memory.

3. Other sections linker setting—Ensure that all of the other sections, including
the .rodata section, map to volatile memory.

4. HAL C run-time configuration settings—Configure the BSP settings as shown
in the table below.

Table 33. BSP Settings to Boot from EPCS and Run from Volatile Memory

BSP Setting Name Value

hal.linker.allow_code_at_reset 0

hal.linker.enable_alt_load 0

hal.linker.enable_alt_load_copy_rwdata 0

hal.linker.enable_alt_load_copy_exceptions 0

hal.linker.enable_alt_load_copy_rodata 0

Related Links

• EPCS to EPCQ Migration Guideline

• Booting From Flash Memory and Running From Volatile Memory on page 226

5.3.2.5 Booting and Running From FPGA Memory

In this configuration, the program is loaded in and runs from internal FPGA memory
resources. The FPGA memory resources are automatically configured when the FPGA
device is configured, so no additional boot loading operations are required.

Prepare for BSP configuration by following these steps:

1. Nios II processor reset address—Ensure that the Nios II processor's reset
address is in the FPGA internal memory. Configure this option using Qsys.

2. Text section linker setting—Ensure that the .text section maps to the internal
FPGA memory.

3. Other sections linker setting—Ensure that all of the other sections map to the
internal FPGA memory.

4. HAL C run-time configuration settings—Configure the BSP settings as shown
in the table below.

Table 34. BSP Settings to Boot and Run from FPGA Memory

BSP Setting Name Value

hal.linker.allow_code_at_reset 1

hal.linker.enable_alt_load 0

continued...   
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BSP Setting Name Value

hal.linker.enable_alt_load_copy_rwdata 0

hal.linker.enable_alt_load_copy_exceptions 0

hal.linker.enable_alt_load_copy_rodata 0

This configuration requires that you generate FPGA memory Hexadecimal (Intel-
format) Files (.hex) for compilation to the FPGA image. This step is described in the
following section.

5.3.3 Generating and Programming System Memory Images

After you configure your linker settings and boot loader configuration and build the
application image .elf file, you must create a memory programming file. The flow for
creating the memory programming file depends on your choice of FPGA, flash, or
EPCS memory.

The easiest way to generate the memory files for your system is to use the
application-generated makefile targets.

The available mem_init.mk targets are listed in the “Common BSP Tasks” section in
the Nios II Software Build Tools chapter of the Nios II Gen2 Software Developer's
Handbook. You can also perform the same process manually, as shown in the following
sections.

Generating memory programming files is not necessary if you want to download and
run the application on the target system, for example, during the development and
debug cycle.

Related Links

Nios II Software Build Tools

5.3.3.1 Programming FPGA Memory with the Nios II Software Build Tools
Command Line

If your software application is designed to run from an internal FPGA memory
resource, you must convert the application image .elf file to one or more .hex
memory files. The Quartus Prime software compiles these .hex memory files to a .sof
file. When this image is loaded in the FPGA it initializes the internal memory blocks.

To create a .hex memory file from your .elf file, type the following command:

elf2hex <myapp>.elf <start_addr> <end_addr> --width=<data_width> 
<hex_filename>.hex

This command creates a .hex memory file from application image <myapp>.elf, using
data between <start_addr> and <end_addr>, formatted for memory of width
<data_width>. The command places the output in the file <hex_filename>.hex. For
information about elf2hex command-line arguments, type elf2hex --help.

Compile the .hex memory files to an FPGA image using the Quartus Prime software.
Initializing FPGA memory resources requires some knowledge of Qsys and the Quartus
Prime software.
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5.3.3.2 Configuring and Programming Flash Memory in Nios II Software Build
Tools for Eclipse

The Nios II Software Build Tools for Eclipse provide flash programmer utilities to help
you manage and program the contents of flash memory.

The flash programmer allows you to program any combination of software, hardware,
and binary data into flash memory in one operation.

“Configuring and Programming Flash Memory from the Command Line” describes
several common tasks that you can perform in the Flash Programmer in command-line
mode. Most of these tasks can also be performed with the Flash Programmer GUI in
the Nios II Software Build Tools for Eclipse.

For information about using the Flash Programmer, refer to “Programming Flash in
Intel Embedded Systems” in the Getting Started with the Graphical User Interface
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

• Getting Started with the Graphical User Interface

• Configuring and Programming Flash Memory from the Command Line on page 230

5.3.3.3 Configuring and Programming Flash Memory from the Command Line

After you configure and build your BSP project and your application image .elf file,
you must generate a flash programming file. The nios2-flash-programmer tool uses
this file to configure the flash memory device through a programming cable, such as
the USB-Blaster cable.

5.3.3.3.1 Creating a Flash Image File

If a boot loader application is required in your system, then you must first create a
flash image file for your system. This section shows some standard commands in the
Nios II Software Build Tools command line to create a flash image file. The section
does not address the case of programming and configuring the FPGA image from flash
memory.
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The following standard commands create a flash image file for your flash memory
device:

• Boot loader required and EPCS flash device used—To create an EPCS flash
device image, type the following command:

elf2flash --epcs --after=<standard>.flash --input=<myapp>.elf \
--output=<myapp>.flash

This command converts the application image in the file <myapp>.elf to a flash
record format, and creates the new file <myapp>.flash that contains the new
flash record appended to the FPGA hardware image in <standard>.flash.

• Boot loader required and CFI flash memory used—To create a CFI flash
memory image, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--boot=<boot_loader_cfi>.srec \
--input=<myapp>.elf --output=<myapp>.flash

• This command converts the application image in the file <myapp>.elf to a flash
record format, and creates the new file <myapp>.flash that contains the new
flash record appended to the CFI boot loader in <boot_loader_cfi>.srec. The flash
record is to be downloaded to the reset address of the Nios II processor, 0x0, and
the base address of the flash device is 0x0. If you use the Intel-supplied boot
loader, your user-created program sections are also loaded from the flash memory
to their run-time locations.

• No boot loader required and CFI flash memory used—To create a CFI flash
memory image, if no boot loader is required, type the following command:

elf2flash --base=0x0 --reset=0x0 --end=0x1000000 \
--input=<myapp>.elf --output=<myapp>.flash

This command and its effect are almost identical to those of the command to
create a CFI flash memory image if a boot loader is required. In this case, no boot
loader is required, and therefore the --boot command-line option is not present.

The Nios II EDS includes two precompiled boot loaders for your use, one for CFI flash
devices and another for EPCS flash devices. The source code for these boot loaders
can be found in the <Nios II EDS install dir>/components/altera_nios2/
boot_loader_sources/ directory.
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5.4 Document Revision History

Table 35. Nios II Configuration and Booting Solutions Revision History

Date Version Changes

December 2016 2016.12.19 Initial release.
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6 Nios II Debug, Verification, and Simulation
This chapter introduces the best practices for debugging the Nios II processor and
verification for embedded design and simulation. Debugging and verifying an
embedded system involves hardware and software components. To successfully debug
an embedded system requires expertise in both hardware and software. This chapter
helps you understand several tools and techniques that are useful in debugging,
verifying, and bring up the embedded system.
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6.1 Software Debugging Options

The Nios II EDS provides the following programs to aid in debugging your hardware
and software system:

• The Nios II SBT for Eclipse debugger

• Several distinct interfaces to the GNU Debugger (GDB)

• A Nios II-specific implementation of the First Silicon Solutions, Inc.

• System Console, a system debug console

Figure 50. Nios II Software Development Flows: Testing Software
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You can begin debugging software immediately using the built-in Nios II SBT for
Eclipse debugger. This debugging environment includes advanced features such as
trace, watchpoints, and hardware breakpoints.

The Nios II EDS includes the following three interfaces to the GDB debugger:

• GDB console (accessible through the Nios II SBT for Eclipse)

• Standard GDB client (nios2-elf-gdb)

• Insight GDB interface (Tcl/Tk based GUI)

Additional GDB interfaces such as Data Display Debugger (DDD), and Curses GDB
(CGDB) interface also function with the Nios II version of the GDB debugger.

For more information about these interfaces to the GDB debugger, refer to the "Nios II
Command-Line Tools" and "Debugging Nios II Designs" chapters of the Embedded
Design Handbook.

The System Console is a system debug console that provides the Qsys designer with a
Tcl-based, scriptable command-line interface for performing system or individual
component testing.

For detailed information about the System Console, refer to the "Analyzing and
Debugging Designs with the System Console" chapter in volume 3 of the Quartus
Prime Handbook. Online training is available at the Intel Training page of the Intel
website.

Third party debugging environments are also available from vendors such as
Lauterbach Datentechnik GmBH and First Silicon Solutions, Inc.

Related Links

• Debugging Nios II Designs on page 236

• Nios II Command-Line Tools on page 118

• Verification and Board Bring-Up on page 252

• Analyzing and Debugging Designs with System Console

• Intel FPGA Technical Training

6 Nios II Debug, Verification, and Simulation

Embedded Design Handbook
235

https://documentation.altera.com/#/00014470-AA$AA00055254
https://www.altera.com/support/training/overview.html


6.2 Debugging Nios II Designs

This section describes best practices for debugging Nios II processor software designs.
Debugging these designs involves debugging both hardware and software, which
requires familiarity with multiple disciplines. Successful debugging requires expertise
in board layout, FPGA configuration, and Nios II software tools and application
software. This section includes the following topics that discuss debugging techniques
and tools to address difficult embedded design problems:

Related Links

• Debuggers on page 236

• Run-Time Analysis Debug Techniques on page 245

6.2.1 Debuggers

The Nios II development environments offer several tools for debugging Nios II
software systems. This section describes the debugging capabilities available in the
following development environments:

Related Links

• Nios II Software Development Tools on page 236

• SignalTap II Embedded Logic Analyzer on page 244

• Lauterbach Trace32 Debugger and PowerTrace Hardware on page 245

• Data Display Debuggers on page 245

6.2.1.1 Nios II Software Development Tools

The Nios II Software Build Tools for Eclipse is a graphical user interface (GUI) that
supports creating, modifying, building, running, and debugging Nios II programs. The
Nios II Software Build Tools for the command line are command-line utilities available
from a Nios II Command Shell. The Nios II Software Build Tools for Eclipse use the
same underlying utilities and scripts as the Nios II Software Build Tools for the
command line. Using the Software Build Tools provides fine control over the build
process and project settings.

Qsys is a system development tool for creating systems including processors,
peripherals, and memories. The tool enables you to define and generate a complete
FPGA system very efficiently. Qsys does not require that your system contain a Nios II
processor. However, it provides complete support for integrating Nios II processors in
your system, including some critical debugging features.

The following sections describe debugging tools and support features available in the
Nios II software development tools:

Related Links

• Nios II System ID on page 237

• Project Templates on page 238

• Configuration Options on page 238

• Nios II GDB Console and GDB Commands on page 241

• Nios II Console View and stdio Library Functions on page 242
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• Importing Projects Created Using the Nios II Software Build Tools on page 242

• Selecting a Processor Instance in a Multiple Processor Design on page 242

6.2.1.1.1 Nios II System ID

The system identifier (ID) feature is available as a system component in Qsys. The
component allows the debugger to identify attempts to download software projects
with BSP projects that were generated for a different Qsys system. This feature
protects you from inadvertently using an Executable and Linking Format (.elf) file built
for a Nios II hardware design that is not currently loaded in the FPGA. If your
application image does not run on the hardware implementation for which it was
compiled, the results are unpredictable.

To start your design with this basic safety net, in the Nios II Software Build Tools for
Eclipse Debug Configurations dialog box, in the Target Connection tab, ensure
that Ignore mismatched system ID is not turned on.

The system ID feature requires that the Qsys design include a system ID component.
In the figure below shows an Qsys system with a system ID component.

Figure 51. Qsys System With System ID Component

For more information about the System ID component, refer to the System ID Core
chapter in the Embedded Peripheral IP User Guide.

Related Links

System ID Core
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6.2.1.1.2 Project Templates

The Nios II Software Build Tools for Eclipse help you to create a simple, small, and
pretested software project to test a new board.

The Nios II Software Build Tools for Eclipse provide a mechanism to create new
software projects using project templates. To create a simple test program to test a
new board, perform the following steps:

1. In the Nios II perspective, on the File menu, point to New, and click Nios II
Application and BSP from Template.

The New Project wizard for Nios II C/C++ application projects appears.

2. Specify the Qsys information (.sopcinfo) file for your design. The folder in which
this file is located is your project directory.

3. If your hardware design contains multiple Nios II processors, in the CPU list, click
the processor you wish to run this application software.

4. Specify a project name.

5. In the Templates list, click Hello World Small.

6. Click Next.

7. Click Finish.

The Hello World Small template is a very simple, small application. Using a simple,
small application minimizes the number of potential failures that can occur as you
bring up a new piece of hardware.

To create a new project for which you already have source code, perform the
preceding steps with the following exceptions:

• In step 5, click Blank Project.

• After you perform step 7, perform the following steps:

1. Create the new directory <your_project_directory>/software/
<project_name>/source, where <project_name> is the project name you
specified in step 4.

2. Copy your source code files to the new project by copying them to the new
<your_project_directory>/software/<project_name>/source directory.

3. In the Project Explorer tab, right-click your application project name, and
click Refresh. The new source folder appears under your application project
name.

6.2.1.1.3 Configuration Options

The following Nios II Software Build Tools for Eclipse configuration options increase the
amount of debugging information available for your application image .elf file:

Related Links

• Objdump File on page 239

• Show Make Commands on page 240

• Show Line Numbers on page 241
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Objdump File

You can direct the Nios II build process to generate helpful information about your .elf
file in an object dump text file (.objdump). The .objdump file contains information
about the memory sections and their layout, the addresses of functions, and the
original C source code interleaved with the assembly code. The example below shows
part of the C and assembly code section of an .objdump file for the Nios II built-in
Hello World Small project.

Example 31. Piece of Code in .objdump File From Hello World Small Project

06000170 <main>:

include "sys/alt_stdio.h"

int main()
{
6000170:deffff04 addisp,sp,-4
alt_putstr("Hello from Nios II!\n");
6000174:01018034 movhir4,1536
6000178:2102ba04 addir4,r4,2792
600017c:dfc00015 stwra,0(sp)
6000180:60001c00 call60001c0 <alt_putstr>
6000184:003fff06 br6000184 <main+0x14>

06000188 <alt_main>:
* the users application, i.e. main().
*/

void alt_main (void)
{
6000188:deffff04 addisp,sp,-4
600018c:dfc00015 stwra,0(sp)

static ALT_INLINE void ALT_ALWAYS_INLINE
alt_irq_init (const void* base)
{
NIOS2_WRITE_IENABLE (0);
6000190:000170fa wrctlienable,zero
NIOS2_WRITE_STATUS (NIOS2_STATUS_PIE_MSK);
6000194:00800044 movir2,1
6000198:1001703a wrctlstatus,r2

To enable this option in the Nios II Software Build Tools for Eclipse, perform the
following steps:

1. In the Project Explorer window, right-click your application project and click
Properties.

2. On the list to the left, click Nios II Application Properties.

3. On the Nios II Application Properties page, turn on Create object dump.

4. Click Apply.

5. Click OK.

After the next build, the .objdump file is found in the same directory as the newly
built .elf file.
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After the next build generates the .elf file, the build runs the nios2-elf-objdump
command with the options --disassemble-all, --source, and --all-headers
on the generated .elf file.

In the Nios II user-managed tool flow, you can edit the settings in the application
makefile that determine the options with which the nios2-elf-objdump command
runs. Running the create-this-app script, or the nios2-app-generate-makefile
script, creates the following lines in the application makefile:

#Options to control objdump.
CREATE_OBJDUMP := 1
OBJDUMP_INCLUDE_SOURCE :=0
OBJDUMP_FULL_CONTENTS := 0

Edit these options to control the .objdump file according to your preferences for the
project:

• CREATE_OBJDUMP—The value 1 directs nios2-elf-objdump to run with the
options --disassemble, --syms, --all-header, and --source.

• OBJDUMP_INCLUDE_SOURCE—The value 1 adds the option --source to the
nios2-elf-objdump command line.

• OBJDUMP_FULL_CONTENTS—The value 1 adds the option --full-contents to
the nios2-elf-objdump command line.

For detailed information about the information each command-line option generates,
in a Nios II Command Shell, type the following command:

nios2-elf-objdump --help

Show Make Commands

To enable a verbose mode for the make command, in which the individual Makefile
commands appear in the display as they are run, in the Nios II Software Build Tools
for Eclipse, perform the following steps:

1. In the Project Explorer window, right-click your application project and click
Properties.

2. On the list to the left, click C/C++ Build.

3. On the C/C++ Build page, turn off Use default build command.

4. For Build command, type make -d.

5. Click Apply.

6. Click OK.
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Show Line Numbers

To enable display of C source-code line numbers in the Nios II Software Build Tools for
Eclipse, follow these steps:

1. On the Window menu, click Preferences.

2. On the list to the left, under General, under Editors, select Text Editors.

3. On the Text Editors page, turn on Show line numbers.

4. Click Apply.

5. Click OK.

6.2.1.1.4 Nios II GDB Console and GDB Commands

The Nios II GNU Debugger (GDB) console allows you to send GDB commands to the
Nios II processor directly.

To display this console, which allows you to enter your own GDB commands, click the
blue monitor icon on the lower right corner of the Nios II Debug perspective. (If the
Nios II Debug perspective is not displayed, on the Window menu, click Open
Perspective, and click Other to view the available perspectives). If multiple consoles
are connected, click the black arrow next to the blue monitor icon to list the available
consoles. On the list, select the GDB console. The figure below shows the console list
icon— the blue monitor icon and black arrow—that allow you to display the GDB
console.

Figure 52. Console List Icon

An example of a useful command you can enter in the GDB console is:

dump binary memory <file> <start_addr> <end_addr>

This command dumps the contents of a specified address range in memory to a file on
the host computer. The file type is binary. You can view the generated binary file using
the HexEdit hexadecimal-format editor that is available from the HexEdit website.
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Related Links

www.expertcomsoft.com

6.2.1.1.5 Nios II Console View and stdio Library Functions

When debugging I/O behavior, you should be aware of whether your Nios II software
application outputs characters using the printf() function from the stdio library or
the alt_log_printf() function. The two functions behave slightly differently,
resulting in different system and I/O blocking behavior.

The alt_log_printf() function bypasses HAL device drivers and writes directly to
the component device registers. The behavior of the two functions may also differ
depending on whether you enable the reduced-driver option, whether you set your
nios2-terminal session or the Nios II Console view in the Nios II Software Build Tools
for Eclipse to use a UART or a jtag_uart as the standard output device, and whether
the O_NONBLOCK control code is set. In general, enabling the reduced-driver option
disables interrupts, which can affect blocking in jtag_uart devices.

To enable the reduced-drivers option, perform the following steps:

1. In the Nios II Software build Tools for Eclipse, in the Project Explorer window,
right-click your BSP project.

2. Point to Nios II and click BSP Editor. The BSP Editor appears.

3. In the BSP Editor, in the Settings tab, under Common, under hal, click
enable_reduced_device_drivers.

4. Click Generate.

For more information about the alt_log_printf() function, refer to "Using
Character-Mode Devices" in the Developing Programs Using the Hardware Abstraction
Layer chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Links

Developing Programs Using the Hardware Abstraction Layer

6.2.1.1.6 Importing Projects Created Using the Nios II Software Build Tools

Whether a project is created and built using the Nios II Software Build Tools for Eclipse
or using the Nios II Software Build Tools command line, you can debug the
resulting .elf image file in the Nios II Software Build Tools for Eclipse.

For information about how to import a project created with the Nios II Software Build
Tools command line to the Nios II Software Build Tools for Eclipse, refer to "Importing
a Command-Line Project" in the Getting Started with the Graphical User Interface
chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

Getting Started with the Graphical User Interface

6.2.1.1.7 Selecting a Processor Instance in a Multiple Processor Design

In a design with multiple Nios II processors, you must create a different software
project for each processor. When you create an application project, the Nios II
Software Build Tools for Eclipse require that you specify a Board Support Package
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(BSP) project. If a BSP for your application project does not yet exist, you can create
one. For BSP generation, you must specify the CPU to which the application project is
targeted.

The figure below shows how you specify the CPU for the BSP in the Nios II Software
Build Tools for Eclipse. The Nios II Board Support Package page of the New Project
wizard collects the information required for BSP creation. This page derives the list of
available CPU choices from the .sopcinfo file for the system.

Figure 53. Nios II Software Build Tools for Eclipse Board Support Package Page— CPU
Selection
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From the Nios II Command Shell, the jtagconfig –n command identifies available
JTAG devices and the number of CPUs in the subsystem connected to each JTAG
device. The example below shows the system response to a jtagconfig -n command.

Example 32. Two-FPGA System Response to jtagconfig Command

[Qsys]$ jtagconfig -n
1) USB-Blaster [USB-0]
120930DD EP2S60
Node 19104600
Node 0C006E00
2) USB-Blaster [USB-1]
020B40DD EP2C35
Node 19104601
Node 19104602
Node 19104600
Node 0C006E00

The response in the example lists two different FPGAs, connected to the running JTAG
server through different USB-Blaster cables. The cable attached to the USB-0 port is
connected to a JTAG node in a Qsys subsystem with a single Nios II core. The cable
attached to the USB-1 port is connected to a JTAG node in a Qsys subsystem with
three Nios II cores. The node numbers represent JTAG nodes inside the FPGA. The
appearance of the node number 0x191046xx in the response confirms that your FPGA
implementation has a Nios II processor with a JTAG debug module. The appearance of
a node number 0x0C006Exx in the response confirms that the FPGA implementation
has a JTAG UART component. The CPU instances are identified by the least significant
byte of the nodes beginning with 191. The JTAG UART instances are identified by the
least significant byte of the nodes beginning with 0C. Instance IDs begin with 0.

Only the CPUs that have JTAG debug modules appear in the listing. Use this listing to
confirm you have created JTAG debug modules for the Nios II processors you
intended.

6.2.1.2 SignalTap II Embedded Logic Analyzer

The SignalTap II embedded logic analyzer can help you to catch some software-related
problems, such as an interrupt service routine that does not properly clear the
interrupt signal.

For information about the SignalTap II embedded logic analyzer, refer to the Design
Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the
Quartus Prime Handbook and the Verification and Board Bring-Up chapter of this
handbook.

The Nios II plug-in for the SignalTap II embedded logic analyzer enables you to
capture a Nios II processor's program execution.

For more information about the Nios II plug-in for the SignalTap II embedded logic
analyzer, refer to AN446: Debugging Nios II Systems with the SignalTap II Logic
Analyzer.
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Related Links

• Verification and Board Bring-Up on page 252

• Design Debugging Using the SignalTap II Logic Analyzer

• AN446: Debugging Nios II Systems with the SignalTap II Logic Analyzer.

6.2.1.3 Lauterbach Trace32 Debugger and PowerTrace Hardware

Lauterbach Datentechnik GmBH (Lauterbach) provides the Trace32 ICD-Debugger for
the Nios II processor. The product contains both hardware and software. In addition to
a connection for the 10-pin JTAG connector that is used for the Intel FPGA USB
Download Cable , the PowerTrace hardware has a 38-pin mictor connection option.

Lauterbach also provides a module for off-chip trace capture and an instruction-set
simulator for Nios II systems.

The order in which devices are powered up is critical. The Lauterbach PowerTrace
hardware must always be powered when power to the FPGA hardware is applied or
terminated. The Lauterbach PowerTrace hardware’s protection circuitry is enabled after
the module is powered up.

For more information about the Lauterbach PowerTrace hardware and the required
power-up sequence, refer to AN543: Debugging Nios II Software Using the Lauterbach
Debugger.

Related Links

• AN543: Debugging Nios II Software Using the Lauterbach Debugger

• www.lauterbach.com

6.2.1.4 Data Display Debuggers

Another alternative debugger is the Data Display Debugger (DDD). This debugger is
compatible with GDB commands—it is a user interface to the GDB debugger—and can
therefore be used to debug Nios II software designs. The DDD can display data
structures as graphs.

6.2.2 Run-Time Analysis Debug Techniques

This section discusses methods and tools available to analyze a running software
system.
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6.2.2.1 Software Profiling

Intel provides the following tools to profile the run-time behavior of your software
system:

• GNU profiler—The Nios II EDS toolchain includes the gprof utility for profiling
your application. This method of profiling reports how long various functions run in
your application.

• High resolution timer—The Qsys timer peripheral is a simple time counter that
can determine the amount of time a given subroutine or code segment runs. You
can read it at various points in the source code to calculate elapsed time between
timer samples.

• Performance counter peripheral—The Qsys performance counter peripheral
can profile several different sections of code with a series of counter peripherals.
This peripheral includes a simple software API that enables you to print out the
results of these timers through the Nios II processor's stdio services.

For more information about how to profile your software application, refer to AN391:
Profiling Nios II Systems.

For additional information about the Qsys timer peripheral, refer to the Interval Timer
Core chapter in the Embedded Peripherals IP User Guide and to the Developing Nios II
Software chapter of this handbook.

For additional information about the Qsys performance counter peripheral, refer to the
Performance Counter Core chapter in the Embedded Peripherals IP User Guide.

Related Links

• Developing Nios II Software on page 137

• AN391: Profiling Nios II Systems

• Interval Timer Core

• Performance Counter Core

6.2.2.2 Watchpoints

Watchpoints provide a powerful method to capture all writes to a global variable that
appears to be corrupted. The Nios II Software Build Tools for Eclipse support
watchpoints directly.

For more information about watchpoints, refer to the Nios II online Help. In Nios II
Software Build Tools for Eclipse, on the Help menu, click Search. In the search field,
type watchpoint, and select the topic Adding watchpoints.

To enable watchpoints, you must configure the Nios II processor’s debug level in Qsys
to debug level 2 or higher. To configure the Nios II processor’s debug level in Qsys to
the appropriate level, perform the following steps:

1. On the Qsys System Contents tab, right-click the desired Nios II processor
component. A list of options appears.

2. On the list, click Edit. The Nios II processor configuration page appears.

3. Click the JTAG Debug Module tab, shown in Figure 54 on page 248

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.
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Depending on the debug level you select, a maximum of four watchpoints, or data
triggers, are available. Figure 54 on page 248 shows the number of data triggers
available for each debug level. The higher your debug level, the more logic resources
you use on the FPGA.

For more information about the Nios II processor debug levels, refer to the
Instantiating the Nios II Processor chapter in the Nios II Gen2 Processor Reference
Handbook.

Related Links

Instantiating the Nios II Gen2 Processor

6.2.2.3 Stack Overflow

Stack overflow is a common problem in embedded systems, because their limited
memory requires that your application have a limited stack size. When your system
runs a real-time operating system, each running task has its own stack, increasing the
probability of a stack overflow condition. As an example of how this condition may
occur, consider a recursive function, such as a function that calculates a factorial
value. In a typical implementation of this function, factorial(n) is the result of
multiplying the value n by another invocation of the factorial function, factorial(n-
1). For large values of n, this recursive function causes many call stack frames to be
stored on the stack, until it eventually overflows before calculating the final function
return value.

6.2.2.3.1 Enabling Run Time Stack Checking

Using the Nios II Software Build Tools for Eclipse, you can enable the HAL to check for
stack overflow.

If you enable stack overflow checking and you register an instruction-related
exception handler, on stack overflow, the HAL calls the instruction-related exception
handler. If you enable stack overflow checking and do not register an instruction-
related exception handler, and you enable a JTAG debug module for your Nios II
processor, on stack overflow, execution pauses in the debugger, exactly as it does
when the debugger encounters a breakpoint. To enable stack overflow checking, in the
BSP Editor, in the Settings tab, under Advanced, under hal, click
enable_runtime_stack_checking.

For information about the instruction-related exception handler, refer to "The
Instruction-Related Exception Handler" in the Exception Handling chapter of the Nios
II Gen2 Software Developer’s Handbook.

Related Links

• Exception Handling

• Run Time Stack Checking And Exception Debugging

6.2.2.4 Hardware Abstraction Layer (HAL)

The Altera HAL provides the interfaces and resources required by the device drivers
for most Qsys system peripherals. You can customize and debug these drivers for your
own Qsys system.

To learn more about debugging HAL device drivers and Qsys peripherals, refer to
AN459: Guidelines for Developing a Nios II HAL Device Driver.
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Related Links

AN459: Guidelines for Developing a Nios II HAL Device Driver

6.2.2.5 Breakpoints

You can set hardware breakpoints on code located in read-only memory such as flash
memory. If you set a breakpoint in a read-only area of memory, a hardware
breakpoint, rather than a software breakpoint, is selected automatically.

To enable hardware breakpoints, you must configure the Nios II processor’s debug
level in Qsys to debug level 2 or higher. To configure the Nios II processor’s debug
level in Qsys to the appropriate level, perform the following steps:

1. On the Qsys System Contents tab, right-click the desired Nios II processor
component.

2. On the right button pop-up menu, click Edit. The Nios II processor configuration
page appears.

3. Click the JTAG Debug Module tab, shown in the figure below.

4. Select Level 2, Level 3, or Level 4.

5. Click Finish.

Depending on the debug level you select, a maximum of four hardware breakpoints
are available. The figure below shows the number of hardware breakpoints available
for each debug level. The higher your debug level, the more logic resources you use
on the FPGA.

Figure 54. Nios II Processor — JTAG Debug Module — Qsys Configuration Page

For more information about the Nios II processor debug levels, refer to the
Instantiating the Nios II Processor chapter in the Nios II Gen2 Processor Reference
Handbook.
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Related Links

Instantiating the Nios II Gen2 Processor

6.2.2.6 Debugger Stepping and Using No Optimizations

Use the None (–O0) optimization level compiler switch to disable optimizations for
debugging. Otherwise, the breakpoint and stepping behavior of your debugger may
not match the source code you wrote. This behavior mismatch between code
execution and high-level original source code may occur even when you click the i
button to use the instruction stepping mode at the assembler instruction level. This
mismatch occurs because optimization and in-lining by the compiler eliminated some
of your original source code.

To set the None (–O0) optimization level compiler switch in the Nios II Software Build
Tools for Eclipse, perform the following steps:

1. In the Nios II perspective, right-click your application project. A list of options
appears.
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Figure 55. Application Project Options

2. On the list, click Properties. The Properties for <project name> dialog box
appears.

3. In the left pane, click Nios II Application Properties.
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Figure 56. Nios Application Properties

4. In the Optimization Level list, select Off.

5. Click Apply.

6. Click OK
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6.3 Verification and Board Bring-Up

This section provides an overview of the tools available in the Quartus Prime software
and the Nios II Embedded Design Suite (EDS) that you can use to verify and bring up
your embedded system.

This section covers the following topics:

• Verification Methods

• Board Bring-up

• System Verification

6.3.1 Verification Methods

Embedded systems can be difficult to debug because they have limited memory and
I/O and consist of a mixture of hardware and software components. Intel provides the
following tools and strategies to help you overcome these difficulties:

• System Console

• SignalTap II Embedded Logic Analyzer

• External Instrumentation

• Stimuli Generation

6.3.1.1 Prerequisites

To make effective use of this section, you should be familiar with the following topics:

• Defining and generating Nios II hardware systems with Qsys

• Compiling Nios II hardware systems with the Quartus Prime development software

6.3.1.2 System Console

You can use the System Console to perform low–level debugging of a Qsys system.
You access the System Console functionality in command line mode. You can work
interactively or run a Tcl script. The System Console prints responses to your
commands in the terminal window. To facilitate debugging with the System Console,
you can include one of the four Qsys components with interfaces that the System
Console can use to send commands and receive data.

Table 36. Qsys Components for Communication with the System Console

Component Name Debugs Components with the Following Interface
Types

Nios II processor with JTAG debug enabled Components that include an Avalon-MM slave interface. The
JTAG debug module can also control the Nios II processor
for debug functionality, including starting, stopping, and
stepping the processor.

JTAG to Avalon master bridge Components that include an Avalon-MM slave interface

Avalon Streaming (Avalon-ST) JTAG Interface Components that include an Avalon-ST interface

JTAG UART The JTAG UART is an Avalon-MM slave device that can be
used in conjunction with the System Console to send and
receive byte streams.
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The System Console can also send and receive byte streams from any SLD node,
whether it is instantiated in a Qsys component provided by Intel, a custom
component, or part of your Quartus Prime project. However, this approach requires
detailed knowledge of the JTAG commands.

The System Console allows you to perform any of the following tasks:

• Access memory and peripherals

• Start or stop a Nios II processor

• Access a Nios II processor register set and step through software

• Verify JTAG connectivity

• Access the reset signal

• Sample the system clock

Using the System Console you can test your own custom components in real hardware
without creating a testbench or writing test code for the Nios II processor. By coding a
Tcl script to access a component with an Avalon-MM slave port, you create a testbench
that abstracts the Avalon-MM master accesses to a higher level. You can use this
strategy to quickly test components, I/O, or entire memory-mapped systems.

Embedded control systems typically include inputs such as sensors, outputs such as
actuators, and a processor that determines the outputs based on input values. You can
test your embedded control system in isolation by creating an additional system to
exercise the embedded system in hardware. This approach allows you to perform
automated testing of hardware-in-the-loop (HIL) by using the System Console to drive
the inputs into the system and measure the outputs. This approach has the advantage
of allowing you to test your embedded system without modifying the design. The
figure below illustrates HIL testing using the System Console.

6 Nios II Debug, Verification, and Simulation

Embedded Design Handbook
253



Figure 57. Hardware-in-the-Loop Testing Using the System Console
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To learn more about the System Console refer to the System Console chapter of the
Quartus Prime Handbook Volume 3: Verification.

Related Links

System Console

6.3.1.3 SignalTap II Embedded Logic Analyzer

The SignalTap II embedded logic analyzer is available in the Quartus Prime software.
It reuses the JTAG pins of the FPGA and has a low Quartus Prime fitter priority,
allowing it to be non-intrusive. Because this logic analyzer is integrated in your design
automatically, it takes synchronized measurements without the undesirable side
effects of output pin capacitance or I/O delay. The SignalTap II embedded logic
analyzer also supports Tcl scripting so that you can automate data capture, duplicating
the functionality that external logic analyzers provide.
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This logic analyzer can operate while other JTAG components, including the Nios II
JTAG debug module and JTAG UART, are in use, allowing you to perform co-
verification. You can use the plug-in support available with the SignalTap II embedded
logic analyzer to enhance your debug capability with any of the following:

• Instruction address triggering

• Non-processor related triggering

• Software disassembly

• Instruction display (in hexadecimal or symbolic format)

You can also use this logic analyzer to capture data from your embedded system for
analysis by the MATLAB software from Mathworks. The MATLAB software receives the
data using the JTAG connection and can perform post processing analysis. Using
looping structures, you can perform multiple data capture cycles automatically in the
MATLAB software, instead of manually controlling the logic analyzer using the Quartus
Prime design software.

Because the SignalTap II embedded logic analyzer uses the FPGA’s JTAG connection,
continuous data triggering may result in lost samples. For example, if you capture
data continuously at 100 MHz, you should not expect all of your samples to be
displayed in the logic analyzer GUI. The logic analyzer buffers the data at 100 MHz;
however, if the JTAG interface becomes saturated, samples are lost.

To learn more about SignalTap II embedded logic analyzer and co-verification, refer to
AN446: Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer
and the Quartus Prime Handbook Volume 3: Verification.

Related Links

• AN446: Debugging Nios II Systems with the SignalTap II Embedded Logic
Analyzer

• Intel Quartus Prime Handbook Volume 3: Verification

6.3.1.4 External Instrumentation

If your design does not have enough on-chip memory to store trace buffers, you can
use an external logic analyzer for debugging. External instrumentation is also
necessary if you require any of the following:

• Data collection with pin loading

• Complex triggers

• Asynchronous data capture

Intel provides procedures to connect external verification devices such as
oscilloscopes, logic analyzers, and protocol analyzers to your FPGA.

6.3.1.4.1 Signal Probe

The Signal Probe incremental routing feature allows you to route signals to output pins
of the FPGA without affecting the existing fit of a design to a significant degree. You
can use Signal Probe to investigate internal device signals without rewriting your HDL
code to pass them up through multiple layers of the design hierarchy to a pin.
Creating such revisions manually is time-consuming and error-prone.
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Intel recommends Signal Probe when there are enough pins to route internal signals
out of the FPGA for verification. If FPGA pins are not available, you have the following
three alternatives:

• Reduce the number of pins used by the design to make more pins available to
Signal Probe

• Use the SignalTap II embedded logic analyzer

• Use the Logic Analyzer Interface

Revising your design to increase the number of pins available for verification purposes
requires design changes and can impact the design schedule. Using the SignalTap II
embedded logic analyzer is a viable solution if you do not require continuous sampling
at a high rate. The SignalTap II embedded logic analyzer does not require any
additional pins to be routed; however, you must have enough unallocated logic and
memory resources in your design to incorporate it. If neither of these approaches is
viable, you can use the logic analyzer interface.

To learn more about Signal Probe, refer to the Quick Design Debugging Using Signal
Probe chapter in the Quartus Prime Handbook Volume 3: Verification.

Related Links

Quick Design Debugging Using SignalProbe

6.3.1.4.2 Logic Analyzer Interface

The Quartus Prime Logic Analyzer Interface is a JTAG programmable method of driving
multiple time-domain multiplexed signals to pins for external verification. Because the
Logical Analyzer Interface multiplexes pins, it minimizes the pincount requirement.
Groups of signals are assigned to a bank. Using JTAG as a communication channel,
you can switch between banks.

You should use this approach when SignalTap II embedded logic analyzer is insufficient
for your verification needs. Some external logic analyzer manufacturers support the
Logic Analyzer Interface. These logic analyzers have various amounts of support. The
most important feature is the ability to let the measurement tools cycle through the
signal banks automatically.

The ability to cycle through signal banks is not limited to logic analyzers. You can use
it for any external measurement tool. Some developers use low speed indicators, for
example LEDs, for verification. You can use the Logic Analyzer interface to map many
banks of signals to a small number of verification LEDs. You may wish to leave this
form of verification in your final design so that your product is capable of creating low-
level error codes after deployment.

To learn more about the Quartus Prime Logic Analyzer Interface, refer to the In-
System Debugging Using External Logic Analyzers chapter in the Quartus Prime
Handbook Volume 3: Verification.

Related Links

In-System Debugging Using External Logic Analyzers
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6.3.1.5 Stimuli Generation

To effectively test your system you must maximize your test coverage with as few
stimuli as possible. To maximize your test coverage you should use a combination of
static and randomly generated data. The static data contains a fixed set of inputs that
you can use to test the standard functionality and corner cases of your system.

Random tests are generated at run time, but must be accessible when failures occur
so that you can analyze the failure case. Random test generation is particularly
effective after static testing has identified the majority of issues with the basic
functionality of your design. The test cases created may uncover unanticipated issues.
Whenever randomly generated test inputs uncover issues with your system, you
should add those cases to your static test data set for future testing.

Creating random data for use as inputs to your system can be challenging because
pseudo random number generators (PRNG) tends to repeat patterns. Choose a
different seed each time you initialize the PRNG for your random test generator. The
random number generator creates the same data sequence if it is seeded with the
same value.

Seed generation is an advanced topic and is not covered in detail in this section. The
following recommendations on creating effective seed values should help you avoid
repeating data values:

• Use a random noise measurement. One way to do this is by reading the analog
output value of an A/D converter.

• Use multiple asynchronous counters in combination to create seed values.

• Use a timer value as the seed (that is, the number of seconds from a fixed point in
time).

Using a combination of seed generation techniques can lead to more random behavior.
When generating random sequences, it is important to understand the distribution of
the random data generated. Some generators create linear sequences in which the
distribution is evenly spread across the random number domain. Others create non-
linear sequences that may not provide the test coverage you require. Before you begin
using a random number generator to verify your system, examine the data created for
a few sequences. Doing so helps you understand the patterns created and avoid using
an inappropriate set of inputs.

6.3.2 Board Bring-up

You can minimize board bring-up time by adopting a systematic strategy. First, break
the task down into manageable pieces. Verify the design in segments, not as a whole,
beginning with peripheral testing.

6.3.2.1 Peripheral Testing

The first step in the board bring-up process is peripheral testing. Add one interface at
a time to your design. After a peripheral passes the tests you have created for it, you
should remove it from the test design. Designers typically leave the peripherals that
pass testing in their design as they move on to test other peripherals. Sometimes this
is necessary; however, it should be avoided when possible because multiple
peripherals can create instability due to noise or crosstalk. By testing peripherals in a
system individually, you can isolate the issues in your design to a particular interface.
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A common failure in any system is involves memory. The most problematic memory
devices operate at high speeds, which can result in timing failures. High performance
memory also requires many board traces to transfer data, address, and control
signals, which cause failures if not routed properly. You can use the Nios II processor
to verify your memory devices using verification software. The Nios II processor is not
capable of stress testing your memory but it can be used to detect memory address
and data line issues.

For more information on debugging refer to the Debugging Nios II Designs chapter in
this handbook.

Related Links

Debugging Nios II Designs on page 236

6.3.2.1.1 Data Trace Failure

If your board fabrication facility does not perform bare board testing, you must
perform these tests. To detect data trace failures on your memory interface you
should use a pattern typically referred to as “walking ones.” The walking ones pattern
shifts a logical 1 through all of the data traces between the FPGA and the memory
device. The pattern can be increasing or decreasing; the important factor is that only
one data signal is 1 at any given time. The increasing version of this pattern is as
follows: 1, 2, 4, 8, 16, and so on.

Using this pattern you can detect a few issues with the data traces such as short or
open circuit signals. A signal is short circuited when it is accidentally connected to
another signal. A signal is open circuited when it is accidentally left unconnected.
Open circuits can have a random signal behavior unless a pull-up or pull-down resistor
is connected to the trace. If a pull-up or pull-down resistor is used, the signal drives a
0 or 1; however, the resistor is weak relative to a signal being driven by the test, so
that test value overrides the pull-up or pull-down resistor.

To avoid mixing potential address and data trace issues in the same test, test only one
address location at a time. To perform the test, write the test value out to memory,
and then read it back. After verifying that the two values are equal, proceed to testing
the next value in the pattern. If the verification stage detects a variation between the
written and read values, a bit failure has occurred. The table below provides an
example of the process used to find a data trace failure. It makes the simplifying
assumption that sequential data bits are routed consecutively on the PCB.

Table 37. Walking Ones Example

Written
Value

Read Value Failure Detected

00000001 00000001 No failure detected

00000010 00000000 Error, most likely the second data bit, D[1] stuck low or shorted to ground

00000100 00000100 No failure detected, confirmed D[1] is stuck low or shorted to another trace
that is not listed in this table.

00001000 00001000 No failure detected

00010000 00010000 No failure detected

00100000 01100000 Error, most likely D[6] and D[5] short circuited

01000000 01100000 Error, confirmed that D[6] and D[5] are short circuited

10000000 10000000 No failure detected
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6.3.2.1.2 Address Trace Failure

The address trace test is similar to the walking ones test used for data with one
exception. For this test you must write to all the test locations before reading back the
data. Using address locations that are powers of two, you can quickly verify all the
address traces of your circuit board.

The address trace test detects the aliasing effects that short or open circuits can have
on your memory interface. For this reason it is important to write to each location with
a different data value so that you can detect the address aliasing. You can use
increasing numbers such as 1, 2, 3, 4, and so on while you verify the address traces in
your system. The table below shows how to use powers of two in the process of
finding an address trace failure:

Table 38. Powers of Two Example

Address Written Value Read Value Failure Detected

00000000 1 1 No failure detected

00000001 2 2 No failure detected

00000010 3 3 Error, the second address bit, A[1], is stuck low

00000100 4 4 No failure detected

00001000 5 5 No failure detected

00010000 6 6 No failure detected

00100000 7 7 Error, A[5] and A[4] are short circuited

01000000 8 8 No failure detected

10000000 9 9 No failure detected

6.3.2.1.3 Device Isolation

Using device isolation techniques, you can disable features of devices on your PCB
that cause your design to fail. Typically designers use device isolation for early
revisions of the PCB, and then remove these capabilities before shipping the product.

Most designs use crystal oscillators or other discrete components to create clock
signals for the digital logic. If the clock signal is distorted by noise or jitter, failures
may occur. To guard against distorted clocks, you can route alternative clock pins to
your FPGA. If you include SMA connectors on your board, you can use an external
clock generator to create a clean clock signal. Having an alternative clock source is
very useful when debugging clock-related issues.

Sometimes the noise generated by a particular device on your board can cause
problems with other devices or interfaces. Having the ability to reduce the noise levels
of selected components can help you determine the device that is causing issues in
your design. The simplest way to isolate a noisy component is to remove the power
source for the device in question. For devices that have a limited number of power
pins, if you include 0 ohm resistors in the path between the power source and the pin.
You can cut off power to the device by removing the resistor. This strategy is typically
not possible with larger devices that contain multiple power source pins connecting
directly to a board power plane.
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Instead of removing the power source from a noisy device, you can often put the
device into a reset state by driving the reset pin to an active state. Another option is
to simply not exercise the device so that it remains idle.

A noisy power supply or ground plane can create signal integrity issues. With the
typical voltage swing of digital devices frequently below a single volt, the power supply
noise margin of devices on the PCB can be as little as 0.2 volts. Power supply noise
can cause digital logic to fail. For this reason it is important to be able to isolate the
power supplies on your board. You can isolate your power supply by using fuses that
are removed so that a stable external power supply can be substituted temporarily in
your design.

6.3.2.1.4 JTAG

FPGAs use the JTAG interface for programming, communication, and verification.
Designers frequently connect several components, including FPGAs, discrete
processors, and memory devices, communicating with them through a single JTAG
chain. Sometimes the JTAG signal is distorted by electrical noise, causing a
communication failure for the entire group of devices. To guarantee a stable
connection, you must isolate the FPGA under test from the other devices in the same
JTAG chain.

The figure below Part A illustrates a JTAG chain with three devices. The tdi and tdo
signals include 0 ohm resistors between each device. By removing the appropriate
resistors, it is possible to isolate a single device in the chain as the figure below Part
B illustrates. This technique allows you to isolate one device while using a single JTAG
chain.
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Figure 58. JTAG Isolation
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To learn more about JTAG refer to AN39: IEEE 1149.1(JTAG) Boundary-Scan Testing
in Altera Devices.

Related Links

IEEE 1149.1 JTAG Boundary-Scan Testing in Altera Devices

6.3.2.2 Board Testing

You should convert the simulations you run to verify your intellectual property (IP)
before fabrication to test vectors that you can then run on the hardware to verify that
the simulation and hardware versions exhibit the same behavior. Manufacturing can
also use these tests as part of a regularly scheduled quality assurance test. Because
the tests are run by engineers in other organizations they must be documented and
easy to run.

6.3.2.3 Minimal Test System

Whether you are creating your first embedded system in a FPGA, or are debugging a
complex issue, you should always begin with a minimal system. To minimize the
probability of signal integrity issues, reduce the pincount of your system to the
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absolute minimal number of required pins. In an embedded design that includes the
Nios II processor, the minimal pincount might be clock and reset signals. Such a
system might include the following the following components:

• Nios II processor (with a level 1 debug core)

• On-chip memory

• JTAG UART

• System ID core

Using these four components you can create a functioning embedded system including
debug and terminal access. To simplify your debug process, you should use a Nios II
processor that does not contain a data cache. The Nios II/e core does not include data
caches. The Nios II/f core can also be configured without a data cache. The figure
below illustrates a minimal system. In this system, you have to route only the clock
pin and reset pins, because the JTAG signals are automatically connected by the
Quartus Prime software.

Figure 59. Simple Test System
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You can use the Nios II JTAG debug module to download software to the processor.
Before testing any additional interfaces you should execute a small program that
prints a message to the terminal to verify that your minimal system is functioning
properly.

After you verify that the simple test system functions properly, archive the design.
This design provides a stable starting point to which to add additional components as
verification proceeds. In this system, you can use any of the following for testing:

• A Nios II processor

• The SignalTap II embedded logic analyzer

• An external logic interface

• Signal Probe

• A direct memory access (DMA) engine

• In-system updating of memory and constants
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The Nios II processor is not capable of stress testing high speed memory devices.
Intel recommends that you use a DMA engine to stress test memories. A stress test
should access memory as frequently as possible, performing continuous reads or
writes. Typically, the most problematic access sequence for high-speed memory
involves the bus turnaround between read and write accesses. You can test these
cases by connecting the DMA read and write masters to the same memory and
transferring the contents from one location to another, as shown below.

Figure 60. Using a DMA to Stress Test Memory Devices
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By modifying the arbitration share values for each master to memory connection, you
can control the sequence. To alternate reads and writes, you can use an arbitration
share of one for each DMA master port. To perform two reads followed by two writes,
use an arbitration value of two for each DMA master port. To create more complicated
access sequences you can create a custom master.

Related Links

• Nios II Hardware Development Tutorial

• In-System Modification of Memory and Constants

• Quartus Prime Software: Verification

• DMA Controller

6.3.3 System Verification

System verification is the final step of system design. This section focuses on common
mistakes designers make during system verification and methods for correcting and
avoiding them. It includes the following topics:

• Designing with Verification in Mind

• Accelerating Verification

• Using Software to Verify Hardware

• Environmental Testing
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6.3.3.1 Designing with Verification in Mind

As you design, you should focus on both the development tasks and the verification
strategy. Doing so results in a design that is easier to verify. If you create large,
complicated blocks of logic and wait until the HDL code is complete before testing, you
spend more time verifying your design than if you verify it one section at a time.

Consider leaving in verification code after the individual sections of your design are
working. If you remove too much verification logic it becomes very difficult to
reintroduce it at a later time if needed. If you discover an issue during system
integration, you may need to revisit some of the smaller block designs. If you modify
one of the smaller blocks, you must re-test it to verify that you have not created
additional issues.

Designing with verification in mind is not limited to leaving verification hooks in your
design. Reserving enough hardware resources to perform proper verification is also
important. The following recommendations can help you avoid running out of
hardware resources:

• Design and verify using a larger pin-compatible FPGA.

• Reserve hardware resources for verification in the design plan.

• Design the logic so that optional features can be removed to free up verification
resources.

Finally, schedule a nightly regression test of your design to increase your test
coverage between hardware or software compilations.

6.3.3.2 Accelerating Verification

Intel recommends the verification flow illustrated in the figure below. Verify each
component as it is developed. By minimizing the amount of logic being verified, you
can reduce the time it takes to compile and simulate your design. Consequently, you
minimize the iteration time to correct design issues.

After the individual components are verified, you can integrate them in a Qsys system.
The integrated system must include an Avalon-MM or Avalon Streaming (Avalon-ST)
port. Using the component editor available from Qsys, you add an Avalon-MM interface
to your existing component and integrate it in your system.

After your system is created in Qsys, you can continue the verification process of the
system as a whole. Typically, the verification process has the following two steps:

1. Generate then simulate

2. Generate, compile, and then verify in hardware

The first step provides easier access to the signals in your system. When the
simulation is functioning properly, you can move the verification to hardware. Because
the hardware is orders of magnitude faster than the simulation, running test vectors
on the actual hardware saves time.
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Figure 61. IP Verification and Integration Flow
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To learn more about component editor and system integration, refer to the following
documentation:

Related Links

• Creating Qsys Components

• Avalon Interface Specifications

6.3.3.3 Using Software to Verify Hardware

Many hardware developers use test benches and test harnesses to verify their logic in
simulations. These strategies can be very time consuming. Instead of relying on
simulations for all your verification tasks, you can test your logic using software or
scripts, as the figure below illustrates.

This system uses the JTAG interface to access components connected to the system
interconnect fabric and to create stimuli for the system. If you use the JTAG server
provided by the Quartus Prime programmer, this system can also be located on a
network and accessed remotely. You can download software to the Nios II processor
using the Nios II SBT. You can also use the Nios II JTAG debug core to transmit files to
and from your embedded system using the host file system. Using the System Console
you can access components in your system and also run scripts for automated testing
purposes.

Using the Quartus Prime In-System Memory Content Editor, you can create stimuli for
the two components that control external peripherals. You can also use the In-System
Memory Content Editor to place the embedded system in reset while new stimulus
values are sent to the system. The In-System Memory Editor supports Tcl scripting,
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which you can use to automate the verification process. All of the verification
techniques described in this section can be scripted, allowing many test cycles to be
executed without user interaction.

To learn more about using the host file system refer to the Host File System software
example design available with the Nios II EDS. The Developing Nios II Software
chapter of the Embedded Design Handbook also includes a significant amount of
information about the system file system.

Figure 62. Script Controlled Verification
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To learn more about the verification and scripting abilities outlined in the example
above, refer to the following documentation:

Related Links

Tcl Scripting
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6.3.3.4 Environmental Testing

The last stage of verification is end-user environment testing. Most verification is
performed under ideal conditions. The following conditions in the end user’s
environment can cause the system to fail:

• Voltage variation

• Vibration

• Temperature variation

• Electrical noise

Because it is difficult to predict all the applications for a particular product, you should
create a list of operational specifications before designing the product. You should
verify these specifications before shipping or selling the product. The key issue with
environmental testing is the difficulty associated with obtaining measurements while
the test is underway. For example, it can be difficult to measure signals with an
external logic analyzer while your product is undergoing vibration testing.

While choosing methods to test your hardware design during the early verification
stages, you should also consider how to adapt them for environmental testing. If you
believe your product is susceptible to vibration problems, you should choose sturdy
instrumentation methods when testing memory interfaces. Alternatively, if you believe
your product may be susceptible to electrical noise, then you should choose a highly
reliable interface for debug purposes.

While performing early verification of your design, you can also begin end-
environment testing. Doing so helps you detect potential flaws in early in the design
process. For example, if you wish to test temperature variations, you can use a heat
gun on the product while you are testing. If you wish to perform voltage variation
testing, isolate the power supply in your system and vary the voltage using an
external power supply. Using these verification techniques, you can avoid late design
changes due to failures during environmental testing.
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6.4 Additional Embedded Design Considerations

Consider the following topics as you design your system:

• JTAG signal integrity

• Extra memory space for prototyping

• System verification

6.4.1 JTAG Signal Integrity

The JTAG signal integrity on your system is very important. You must debug your
hardware and software, and program your FPGA, through the JTAG interface. Poor
signal integrity on the JTAG interface can prevent you from debugging over the JTAG
connection, or cause inconsistent debugger behavior.

You can use the System Console to verify the JTAG chain.

JTAG signal integrity problems are extremely difficult to diagnose. To increase the
probability of avoiding these problems, and to help you diagnose them should they
arise, Intel recommends that you follow the guidelines outlined in AN428: MAX II
CPLD Design Guidelines and in the Verification and Board Bring-Up chapter of this
handbook when designing your board.

Note: For more information about the System Console, refer to the Analyzing and Debugging
Designs with the System Console chapter in volume 3 of the Quartus Prime Handbook.

Related Links

• AN428: MAX II CPLD Design Guidelines

• Analyzing and Debugging Designs with System Console

6.4.2 Memory Space For System Prototyping

Even if your final product includes no off-chip memory, Intel recommends that your
prototype board include a connection to some region of off-chip memory. This
component in your system provides additional memory capacity that enables you to
focus on refining code functionality without worrying about code size. Later in the
design process, you can substitute a smaller memory device to store your software.
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6.5 Simulating Nios II Embedded Processor Designs

This section describes the process of generating an RTL simulation environment with
Nios II example designs, Qsys, and the Nios II Software Build Tools (SBT) for Eclipse.
This application note also describes the process of running the Nios II RTL simulation
in the ModelSim Edition simulator.

The increasing pressure to deliver robust products to market in a timely manner has
amplified the importance of comprehensively verifying embedded processor designs.
Therefore, consider the verification solution supplied with the processor when choosing
an embedded processor. Nios II embedded processor designs support a broad range of
verification solutions, including the following:

• Board Level Verification—Intel offers a number of development boards that
provide a versatile platform for verifying both the hardware and software of a Nios
II embedded processor system. You can use the Nios II SBT for Eclipse with its
built-in debugger to verify designs running on either development or custom
boards. You can further debug the hardware components that interact with the
processor with the SignalTap™ II embedded logic analyzer.

• Register Transfer Level (RTL) Simulation—RTL simulation is a powerful means
of debugging the interaction between a processor and its peripheral set. When
debugging a target board, it is often difficult to view signals buried deep in the
system. RTL simulation alleviates this problem as it enables you to functionally
probe every register and signal in the design. You can easily simulate Nios II-
based systems in the ModelSim simulator with an automatically generated
simulation environment that Qsys and the Nios II SBT for Eclipse create.

6.5.1 Before You Begin

This document assumes that you have prior experience using Qsys as well as a
familiarity with the ModelSim simulator. In order to simulate the Nios II design using
the instructions in this document, you must have the following software installed:

• Quartus Prime software

• ModelSim

• Nios II Embedded Design Suite

6.5.2 Setting Up and Generating Your Simulation Enviroment in Qsys

To open the example design, perform the following steps:

1. Download the an351_design.zip design example from the Simulating Nios II
Embedded Processor Design page on the Intel website, and then extract the
design example to your hard drive. The location to which you extract the file is
referred to as <your project directory> throughout the remainder of this
document.

2. Start the Quartus Prime software.

3. On the File menu, click Open Project.

4. Browse to <your project directory>/an351_design.

5. Select an351_project.qpf.

6. Click Open.

7. On the Tools menu, click Qsys.
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8. Open the niosii_system.qsys file.

Note: The design example used for this application note is a complete Qsys
system. Ensure that you have completed building your Qsys system before
you start to generate the simulation models.

9. On the Generation tab, set the following parameters to these values:

• Create simulation model—None

• Create testbench Qsys system—Simple, BFMs for clocks and resets

Note: If your system has exported ports other than the clock and reset,
choose Standard, BFMs for standard Avalon interfaces.

• Create testbench simulation model—Verilog

• Create HDL design files for synthesis—Turn off

• Create block symbol file (.bsf)—Turn off

10. Click Generate. Save the system if prompted.

6.5.2.1 Qsys-Generated System Simulation Files

At this point in the design flow, Qsys has generated your system and created all of the
files necessary for simulation listed in the table below. These simulation files are
located in the <your project directory>/an351_design/niosii_system/testbench
directory.

Table 39. Qsys Files Generated for Nios II Simulation

File Description

Qsys testbench system files Qsys generates a testbench system when you enable the
Create testbench Qsys system option. Qsys connects the
corresponding Avalon Bus Functional Models to all exported
interfaces of your system. For more information about Qsys,
refer to the System Design with Qsys section in volume 1 of
the Quartus Prime Handbook.

msim_setup.tcl Sets up a ModelSim simulation environment and creates
alias commands to compile the required device libraries and
system design files in the correct order, and loads the top-
level design for simulation.

Memory
Initialization Files
(.mif)

Creates Memory Initialization Files (.mif) to initialize
memory components in your system. Use Nios II SBT for
Eclipse to create Nios II processor program to populate
the .mif files.

6.5.2.2 Memory Simulation Models

You can use two types of memory models for simulation purposes: generic and
vendor-specific. For Intel-provided memory controllers, you are provided with generic
simulation models. If you are using custom memory controllers, you should use the
simulation models the memory controller vendor provides. This application note
discusses the generic memory model.

6.5.2.3 Using IP and Qsys Simulation Setup Scripts

Intel IP cores and Qsys systems generate simulation setup scripts. Modify these
scripts to set up supported simulators.
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6.5.3 Creating the Nios II Software

This section describes how to finish setting up your simulation by using the Nios II
SBT for Eclipse to create a software test project and to generate the necessary files for
initializing the memories used in your simulation.

6.5.3.1 Creating a Nios II SBT for Eclipse Project

In this application note, you simulate a simple Hello World program with Qsys. The
Hello World software prints a message to the console via JTAG UART. To create and
build the software project, perform the following steps:

1. Open the Nios II SBT for Eclipse version 11.0 or later.

2. On the File menu, point to New, and click Nios II Application and BSP from
Template.

3. Select the SOPC Information (.sopcinfo) file name by browsing to <your project
directory>/an351_design, and then select niosii_system.sopcinfo.

4. For Project Name, type hello_world_an351.

5. Select Hello World from the Templates option.

6. Click Finish.

7. Right-click on hello_world_an351 in Project Explorer and then click Build
Project.

Now you have successfully built the Hello World project. In the next step, you will
invoke ModelSim simulation from the Nios II SBT for Eclipse. This function
populates the Memory Initialization File (.mif) with the Hello World program and
starts the ModelSim software.

8. Right-click on hello_world_an351 in Project Explorer. Point to Run As, and then
click Nios II ModelSim.

6.5.4 Running Simulation in the ModelSim Simulator

After you have launched the ModelSim simulator from the Nios II SBT for Eclipse,
ModelSim automatically compiles the required device libraries and system design files,
and elaborates and loads the top-level design. The msim_setup.tcl script creates alias
commands for each of the steps. These commands are listed in the table below.

Table 40. Nios II Alias Commands

Macros Description

dev_com Compiles device library files.

com Compiles the design files in correct order.

elab Elaborates the top-level design.

elab_debug Elaborates the top-level design with the novopt option.

id Compiles all the design files and elaborates the top-level
design.

id_debug Compiles all the design files and elaborates the top-level
design with the novopt option.
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Run the simulation in the ModelSim simulator by performing the following steps:

1. In the ModelSim software, on the File menu, click Load. Browse to <your project
directory>/an351_design and select wave.do. This step opens a waveform
viewer with all the JTAG UART signals.

2. In the Transcript window, type run 2 ms. This step starts the simulation for two
milliseconds.

At the end of the simulation, you should see a “Hello from Nios II!” message in the
Transcript window. You can observe the simulation results from the waveform viewer
as well. The figure below shows the simulation result. The waveform is zoomed in at a
specific simulation time in which the Nios II processor writes the first H character to
the JTAG UART component.

Figure 63. Simulation Results
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6.6 Document Revision History

Table 41. Nios II Debug, Verification, and Simulation Chapter Revision History

Date Version Changes

June 2017 2017.06.12 Section added:
• Simulating Nios II Embedded Processor Designs on page 269

December 2016 2016.12.19 Initial release.
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7 Optimizing Nios II Based Systems and Software
Optimizing techniques enable better performance and resource utilization in your
design. This chapter provides various optimizing techniques from the hardware and
software perspective.
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7.1 Hardware Acceleration and Coprocessing

This section discusses how you can use hardware accelerators and coprocessing to
create more efficient, higher throughput designs in Qsys. This section discusses the
following topics:

• Accelerating Cyclic Redundancy Checking (CRC)

• Creating Nios II Custom Instructions

• Creating Multicore Designs

• Pre- and Post-Processing

• Replacing State Machines

7.1.1 Hardware Acceleration

Hardware accelerators implemented in FPGAs offer a scalable solution for
performance-limited systems. Other alternatives for increasing system performance
include choosing higher performance components or increasing the system clock
frequency. Although these other solutions are effective, in many cases they lead to
additional cost, power, or design time.

7.1.1.1 Customizing and Accelerating FPGA Designs

FPGA-based designs provide you with the flexibility to modify your design easily, and
to experiment to determine the best balance between hardware and software
implementation of your design. In a discrete microcontroller-based design process,
you must determine the processor resources—cache size and built-in peripherals, for
example—before you reach the final design stages. You may be forced to make these
resource decisions before you know your final processor requirements. If you
implement some or all of your system's critical design components in an FPGA, you
can easily redesign your system as your final product needs become clear. If you use
the Nios II processor, you can experiment with the correct balance of processor
resources to optimize your system for your needs. Qsys facilitates this flexibility, by
allowing you to add and modify system components and regenerate your project
easily.
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To experiment with performance and resource utilization tradeoffs, the following
hardware optimization techniques are available:

• Processor Performance—You can increase the performance of the Nios II
processor in the following ways:

— Computational Efficiency—Selecting the most computationally efficient Nios
II processor core is the quickest way to improve overall application
performance. The following Nios II processor cores are available, in decreasing
order of performance:6

• Nios II/f—optimized for speed

• Nios II/e—conserves on-chip resources at the expense of speed

— Memory Bandwidth—Using low-latency, high speed memory decreases the
amount of time required by the processor to fetch instructions and move data.
Additionally, increasing the processor’s arbitration share of the memory
increases the processor’s performance by allowing the Nios II processor to
perform more transactions to the memory before another Avalon master port
can assume control of the memory.

— Instruction and Data Caches—Adding an instruction and data cache is an
effective way to decrease the amount of time the Nios II processor spends
performing operations, especially in systems that have slow memories, such
as SDRAM or double data rate (DDR) SDRAM. In general, the larger the cache
size selected for the Nios II processor, the greater the performance
improvement.

— Tightly-coupled Memories—Tightly-coupled memory is fast on-chip memory
that bypasses the cache and has guaranteed low latency. Tightly-coupled
memory gives the best memory access performance. You assign code and
data to tightly-coupled memory partitions in the same way as other memory
sections.

— Hardware Multipliers—The Nios II processor provides the following
hardware multiplier options:

• DSP Block—Includes DSP block multipliers available on the target device.
This option is available only on Intel FPGAs that have DSP Blocks.

• Embedded Multipliers—Includes dedicated embedded multipliers available
on the target device. This option is available only on Intel FPGAs that have
embedded multipliers.

• Logic Elements—Includes hardware multipliers built from logic element
(LE) resources.

• None—Does not include multiply hardware. In this case, multiply
operations are emulated in software

— Optional Branch Prediction—The Nios II processor performs dynamic and
static branch prediction to minimize the cycle penalty associated with taken
branches.

• Clock Frequency—Increasing the speed of the processor’s clock results in more
instructions being executed per unit of time. To gain the best performance
possible, ensure that the processor’s execution memory is in the same clock
domain as the processor, to avoid the use of clock-crossing FIFO buffers.

One of the easiest ways to increase the operational clock frequency of the
processor and memory peripherals is to use a FIFO bridge IP core to isolate the
slower peripherals of the system. With a bridge peripheral, for example, you can
connect the processor, memory, and an Ethernet device on one side of the bridge,
and connect all of the peripherals that are not performance dependent on the
other side of the bridge.
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Similarly, if you implement your system in an FPGA, you can experiment with the best
balance of hardware and software resource usage. If you find you have a software
bottleneck in some part of your application, you can consider accelerating the relevant
algorithm by implementing it in hardware instead of software. Qsys facilitates
experimenting with the balance of software and hardware implementation. You can
even design custom hardware accelerators for specific system tasks.

To help you solve system performance issues, the following acceleration
methodologies are available:

• Custom peripherals

• Custom instructions

The method of acceleration you choose depends on the operation you wish to
accelerate. To accelerate streaming operations on large amounts of data, a custom
peripheral may be a good solution. Hardware interfaces (such as implementations of
the Ethernet or serial peripheral interface (SPI) protocol) may also be implemented
efficiently as custom peripherals. The current floating-point custom instruction is a
good example of the type of operations that are typically best accelerated using
custom instructions.

For information about hardware acceleration, refer to the "Hardware Acceleration and
Coprocessing" chapter of the Embedded Design Handbook.

For information about custom instructions, refer to the Nios II Custom Instruction User
Guide.

For information about creating custom peripherals, refer to the "Creating Qsys
Components" chapter in the Quartus Prime Handbook Volume 1: Design and
Synthesis.

Related Links

• Creating Qsys Components

• Nios II Custom Instruction User Guide

• Hardware Acceleration and Coprocessing on page 275

7.1.1.2 Accelerating Cyclic Redundancy Checking (CRC)

CRC is significantly more efficient in hardware than software; consequently, you can
improve the throughput of your system by implementing a hardware accelerator for
CRC. In addition, by eliminating CRC from the tasks that the processor must run, the
processor has more bandwidth to accomplish other tasks.

The figure below illustrates a system in which a Nios II processor offloads CRC
processing to a hardware accelerator. In this system, the Nios II processor reads and
writes registers to control the CRC using its Avalon Memory-Mapped (Avalon-MM)
slave port. The CRC component’s Avalon-MM master port reads data for the CRC check
from memory.

6 The Nios II/s core is only available with Nios II Classic.
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Figure 64. A Hardware Accelerator for CRC
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An alternative approach includes a dedicated DMA engine in addition to the Nios II
processor. The figure below illustrates this design. In this system, the Nios II
processor programs the DMA engine, which transfers data from memory to the CRC.

Figure 65. DMA and Hardware Accelerator for CRC
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Although the figure above shows the DMA and CRC as separate blocks, you can
combine them as a custom component which includes both an Avalon-MM master and
slave port. You can import this component into your Qsys system using the component
editor.

To learn more about using component editor, refer to the "Component Editor" section
in the Creating Qsys Components chapter of the Quartus Prime Handbook Volume
1:Design and Synthesis. You can find additional examples of hardware acceleration on
the Intel IP:Reference Designs web page.

Related Links

• Intel FPGA IP: Reference Designs

• Creating Qsys Components

7.1.1.2.1 Matching I/O Bandwidths

I/O bandwidth can have a large impact on overall performance. Low I/O bandwidth
can cause a high-performance hardware accelerator to perform poorly when the
dedicated hardware requires higher throughput than the I/O can support. You can
increase the overall system performance by matching the I/O bandwidth to the
computational needs of your system.

Typically, memory interfaces cause the most problems in systems that contain multiple
processors and hardware accelerators. The following recommendations for interface
design can maximize the throughput of your hardware accelerator:

• Match high performance memory and interfaces to the highest priority tasks your
system must perform.

• Give high priority tasks a greater share of the I/O bandwidth if any memory or
interface is shared.

• If you have multiple processors in your system, but only one of the processors
provides real-time functionality, assign it a higher arbitration share.

7.1.1.2.2 Pipelining Algorithms

A common problem in systems with multiple Avalon-MM master ports is competition
for shared resources. You can improve performance by pipelining the algorithm and
buffering the intermediate results in separate on-chip memories. The figure below
illustrates this approach. Two hardware accelerators write their intermediate results to
on-chip memory. The third module writes the final result to an off-chip memory.
Storing intermediate results in on-chip memories reduces the I/O throughput required
of the off-chip memory. By using on-chip memories as temporary storage you also
reduce read latency because on-chip memory has a fixed, low-latency access time.
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Figure 66. Using On-Chip Memory to Achieve High Performance
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To learn more about optimizing memory design refer to the Memory System Design
chapter of this handbook.

Related Links

Memory System Design on page 50

7.1.1.3 Creating Nios II Custom Instructions

The Nios II processor employs a RISC architecture which can be expanded with
custom instructions. The Nios II processor includes a standard interface that you can
use to implement your own custom instruction hardware in parallel with the arithmetic
logic unit (ALU).

All custom instructions have a similar structure. They include up to two data inputs
and one data output, and optional clock, reset, mode, address, and status signals for
more complex multicycle operations. If you need to add hardware acceleration that
requires many inputs and outputs, a custom hardware accelerator with an Avalon-MM
slave port is a more appropriate solution. Custom instructions are blocking operations
that prevent the processor from executing additional instructions until the custom
instruction has completed. To avoid stalling the processor while your custom
instruction is running, you can convert your custom instruction into a hardware
accelerator with an Avalon-MM slave port. If you do so, the processor and custom
peripheral can operate in parallel. The differences in implementation between a
custom instruction and a hardware accelerator are illustrated below.
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Figure 67. Implementation Differences between a Custom Instruction and Hardware
Accelerator
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Because custom instructions extend the Nios II processor’s ALU, the logic must meet
timing or the fMAX of the processor will suffer. As you add custom instructions to the
processor, the ALU multiplexer grows in width as the figure below illustrates. This
multiplexer selects the output from the ALU hardware (c[31:0]). Although you can
pipeline custom instructions, you have no control over the automatically inserted ALU
multiplexer. As a result, you cannot pipeline the multiplexer for higher performance.

7 Optimizing Nios II Based Systems and Software

Embedded Design Handbook
281



Figure 68. Individual Custom Instructions
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Instead of adding several custom instructions, you can combine the functionality into a
single logic block as shown in the "Combined Custom Instruction" figure below. When
you combine custom instructions you use selector bits to select the required
functionality. If you create a combined custom instruction, you must insert the
multiplexer in your logic manually. This approach gives you full control over the
multiplexer logic that generates the output. You can pipeline the multiplexer to
prevent your combined custom instruction from becoming part of a critical timing
path.
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Figure 69. Combined Custom Instruction
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With multiple custom instructions built into a logic block, you can pipeline the output if
it fails timing. To combine custom instructions, each must have identical latency
characteristics.

Custom instructions are either fixed latency or variable latency. You can convert fixed
latency custom instructions to variable latency by adding timing logic. The figure
below shows the simplest method to implement this conversion by shifting the start
bit by <n> clock cycles and logically ORing all the done bits.
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Figure 70. Sequencing Logic for Mixed Latency Combined Custom Instruction
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Each custom instruction contains at least one custom instruction slave port, through
which it connects to the ALU. A custom instruction slave is that slave port: the slave
interface that receives the data input signals and returns the result. The custom
instruction master is the master port of the processor that connects to the custom
instruction.

For more information about creating and using custom instructions refer to the Nios II
Custom Instruction User Guide.

Related Links

Nios II Custom Instruction User Guide

7.1.2 Coprocessing

Partitioning system functionality between a Nios II processor and hardware
accelerators or between multiple Nios II processors in your FPGA can help you control
costs. The following sections demonstrate how you can use coprocessing to create
high performance systems.

7.1.2.1 Creating Multicore Designs

Multicore designs combine multiple processor cores in a single FPGA to create a higher
performance computing system. Typically, the processors in a multicore design can
communicate with each other. Designs including the Nios II processor can implement
inter-processor communication, or the processors can operate autonomously.

When a design includes more than one processor you must partition the algorithm
carefully to make efficient use of all of the processors. The following example includes
a Nios II-based system that performs video over IP, using a network interface to
supply data to a discrete DSP processor. The original design overutilizes the Nios II
processor. The system performs the following steps to transfer data from the network
to the DSP processor:

1. The network interface signals when a full data packet has been received.

2. The Nios II processor uses a DMA engine to transfer the packet to a dual-port on-
chip memory buffer.

3. The Nios II processor processes the packet in the on-chip memory buffer.

4. The Nios II processor uses the DMA engine to transfer the video data to the DSP
processor.
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In the original design, the Nios II processor is also responsible for communications
with the following peripherals that include Avalon-MM slave ports:

• Hardware debug interface

• User interface

• Power management

• Remote control receiver

Figure 71. Over-Utilized Video System
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Adding a second Nios II processor to the system, allows the workload to be divided so
that one processor handles the network functionality and the other the control
interfaces.

Because the revised design has two processors, you must create two software
projects; however, each of these software projects handles fewer tasks and is simpler
to create and maintain. You must also create a mechanism for inter-processor
communication. The inter-processor communication in this system is relatively simple
and is justified by the system performance increase.

For more information about designing hardware and software for inter-processor
communication, refer to the Creating Multiprocessor Nios II Systems Tutorial and the
Peripherals section of the Embedded Peripherals IP User Guide. Refer to the Nios II
Gen2 Processor Reference Handbook for complete information about this soft core
processor. A Nios II Multiprocessor Design Example is available on the Intel website.
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Figure 72. High Performance Video System
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In the figure above, the second Nios II processor added to the system performs
primarily low-level maintenance tasks; consequently, the Nios II/e core is used. The
Nios II/e core implements only the most basic processor functionality in an effort to
trade off performance for a small hardware footprint. This core is approximately one-
third the size of the Nios II/f core.

To learn more about the three Nios II processor cores refer to the Nios II Core
Implementation Details chapter in the Nios II Gen2 Processor Reference Handbook.

Related Links

• Creating Multiprocessor Nios II Systems Tutorial

• Embedded Peripherals IP User Guide

• Nios II Core Implementation Details

• Nios II Multiprocessor Design Example

7.1.2.2 Pre- and Post-Processing

The high performance video system illustrated in Figure 72 on page 286 distributes
the workload by separating the control and data planes in the hardware. Figure 74 on
page 288 illustrates a different approach. All three stages of a DSP workload are
implemented in software running on a discrete processor. This workload includes the
following stages:

• Input processing—typically removing packet headers and error correction
information

• Algorithmic processing and error correction—processing the data

• Output processing—typically adding error correction, converting data stream to
packets, driving data to I/O devices
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By off loading the processing required for the inputs or outputs to an FPGA, the
discrete processor has more computation bandwidth available for the algorithmic
processing.

Figure 73. Discrete Processing Stages
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If the discrete processor requires more computational bandwidth for the algorithm,
dedicated coprocessing can be added. The figure below shows examples of dedicated
coprocessing at each stage.
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Figure 74. Pre- Dedicated, and Post-Processing
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7.1.2.3 Replacing State Machines

You can use the Nios II processor to implement scalable and efficient state machines.
When you use dedicated hardware to implement state machines, each additional state
or state transition increases the hardware utilization. In contrast, adding the same
functionality to a state machine that runs on the Nios II processor only increases the
memory utilization of the Nios II processor.

A key benefit of using Nios II for state machine implementation is the reduction of
complexity that results from using software instead of hardware. A processor, by
definition, is a state machine that contains many states. These states can be stored in
either the processor register set or the memory available to the processor;
consequently, state machines that would not fit in the footprint of a FPGA can be
created using memory connected to the Nios II processor.

When designing state machines to run on the Nios II processor, you must understand
the necessary throughput requirements of your system. Typically, a state machine is
comprised of decisions (transitions) and actions (outputs) based on stimuli (inputs).
The processor you have chosen determines the speed at which these operations take
place. The state machine speed also depends on the complexity of the algorithm being
implemented. You can subdivide the algorithm into separate state machines using
software modularity or even multiple Nios II processor cores that interact together.
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7.1.2.3.1 Low-Speed State Machines

Low-speed state machines are typically used to control peripherals. The Nios II/e
processor pictured in Figure 71 on page 285 could implement a low speed state
machine to control the peripherals.

Even though the Nios II/e core does not include a data cache, Intel recommends that
the software accessing the peripherals use data cache bypassing. Doing so avoids
potential cache coherency issues if the software is ever run on a Nios II/f core that
includes a data cache.

For information about data cache bypass methods, refer to the Processor Architecture
chapter of the Nios II Gen2 Processor Reference Handbook.

State machines implemented in Qsys require the following components:

• A Nios II processor

• Program and data memory

• Stimuli interfaces

• Output interfaces

The building blocks you use to construct a state machine in Qsys are no different than
those you would use if you were creating a state machine manually. One noticeable
difference in the Qsys environment is accessing the interfaces from the Nios II
processor. The Nios II processor uses an Avalon-MM master port to access peripherals.
Instead of accessing the interfaces using signals, you communicate via memory-
mapped interfaces. Memory-mapped interfaces simplify the design of large state
machines because managing memory is much simpler than creating numerous directly
connected interfaces.

For more information about the Avalon-MM interface, refer to the Avalon Interface
Specifications.

Related Links

• Processor Architecture

• Avalon Interface Specifications

7.1.2.3.2 High-Speed State Machines

You should implement high throughput state machine using a Nios II/f core. To
maximize performance, focus on the I/O interfaces and memory types. The following
recommendations on memory usage can maximize the throughput of your state
machine:

• Use on-chip memory to store logic for high-speed decision making.

• Use tightly-coupled memory if the state machine must operate with deterministic
latency. Tightly-coupled memory has the same access time as cache memory;
consequently, you can avoid using cache memory and the cache coherency
problems that might result.

For more information about tightly-coupled memory, refer to the Cache and Tightly-
Coupled Memory chapter of the Nios II Gen2 Software Developer's Handbook.

Related Links

Cache and Tightly-Coupled Memory
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7.1.2.3.3 Subdivided State Machines

Subdividing a hardware-based state machine into smaller more manageable units can
be difficult. If you choose to keep some of the state machine functionality in a
hardware implementation, you can use the Nios II processor to assist it. For example,
you may wish to use a hardware state machine for the high data throughput
functionality and Nios II for the slower operations. If you have partitioned a
complicated state machine into smaller, hardware based state machines, you can use
the Nios II processor for scheduling.
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7.2 Software Application Optimization

This section examines techniques to increase your software application's performance
and decrease its size.

7.2.1 Performance Tuning Background

Software performance is the speed with which a certain task or series of tasks can be
performed in the system. To increase software performance, you must first determine
the sections of the code in which the processing time is spent.

An application's tasks can be divided into interrupt tasks and system processing tasks.
Interrupt task performance is the speed with which the processor completes an
interrupt service routine to handle an external event or condition. System processing
task performance is the speed with which the system performs a task explicitly
described in the application code.

A complete analysis of application performance examines the performance of the
system processing tasks and the interrupt tasks, as well as the footprint of the
software image.

7.2.2 Speeding Up System Processing Tasks

To increase your application’s performance, determine how you can speed up the
system processing tasks it performs. First analyze the current performance and
identify the slowest tasks in your system, then determine whether you can accelerate
any part of your application by increasing processor efficiency, creating a hardware
accelerator, or improving the applications’s methods for data movement.

7.2.2.1 Analyzing the Problem

The first step to accelerate your system processing is to identify the slowest task in
your system. Intel provides the following tools to profile your application:

• GNU Profiler—The Nios II EDS toolchain includes a method for profiling your
application with the GNU Profiler. This method of profiling reports how long various
functions run in your application.

• High resolution timer—The interval timer peripheral is a simple time counter
that can determine the amount of time a given subroutine runs.

• Performance counter peripheral—The performance counter unit can profile
several different sections of code with a collection of counters. This peripheral
includes a simple software API that enables you to print out the results of these
counters through the Nios II processor's stdio services.

Use one or more of these tools to determine the tasks in which your application is
spending most of its processing time.

For more information about how to profile your software application, refer to AN391:
Profiling Nios II Systems.

Related Links

AN391: Profiling Nios II Systems
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7.2.2.2 Accelerating your Application

This section describes several techniques to accelerate your application. Because of
the flexible nature of the FPGA, most of these techniques modify the system hardware
to improve the processor's execution performance. This section describes the following
performance enhancement methods:

• Methods to increase processor efficiency

• Methods to accelerate select software algorithms using hardware accelerators

• Using a DMA peripheral to increase the efficiency of sequential data movement
operations
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7.2.2.2.1 Increasing Processor Efficiency

An easy way to increase the software application's performance is to increase the rate
at which the Nios II processor fetches and processes instructions, while decreasing the
number of instructions the application requires. The following techniques can increase
processor efficiency in running your application:

• Processor clock frequency—Modify the processor clock frequency using Qsys.
The faster the execution speed of the processor, the more quickly it is able to
process instructions.

• Nios II processor improvements—Select the most efficient version of the Nios
II processor and parameterize it properly. The following processor settings can be
modified using Qsys:

— Processor type—Select the fastest Nios II processor core possible. In order
of performance, from fastest to slowest, the processors are the Nios II/f and
Nios II/e cores.

— Instruction and data cache—Include an instruction or data cache, especially
if the memory you select for code execution—where the application image and
the data are stored—has high access time or latency.

— Multipliers—Use hardware multipliers to increase the efficiency of relevant
mathematical operations.

For more information about the processor configuration options, refer to the
Instantiating the Nios II Processor chapter of the Nios II Gen2 Processor
Reference Handbook.

• Nios II instruction and data memory speed—Select memory with low access
time and latency for the main program execution. The memory you select for main
program execution impacts overall performance, especially if the Nios II caches
are not enabled. The Nios II processor stalls while it fetches program instructions
and data.

• Tightly coupled memories—Select a tightly coupled memory for the main
program execution. A tightly coupled memory is a fast general purpose memory
that is connected directly to the Nios II processor's instruction or data paths, or
both, and bypasses any caches. Access to tightly coupled memory has the same
speed as access to cache memory. A tightly coupled memory must guarantee a
single-cycle access time. Therefore, it is usually implemented in an FPGA memory
block.

For more information about tightly coupled memories, refer to the Using Tightly
Coupled Memory with the Nios II Processor Tutorial and to the Cache and Tightly-
Coupled Memory chapter of the Nios II Gen2 Software Developer's Handbook.

• Compiler Settings—More efficient code execution can be attained with the use of
compiler optimizations. Increase the compiler optimization setting to -03, the
fastest compiler optimization setting, to attain more efficient code execution. You
set the C-compiler optimization settings for the BSP project independently of the
optimization settings for the application. For information about configuring the
compiler optimization level for the BSP project, refer to the
hal.make.bsp_cflags_optimization BSP setting in the Nios II Software
Build Tools Reference chapter of the Nios II Gen2 Software Developer’s Handbook.

Related Links

• Nios II Software Build Tools Reference

• Instantiating the Nios II Gen2 Processor
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• Cache and Tightly-Coupled Memory

• Using Tightly Coupled Memory with the Nios II Processor Tutorial

7.2.2.2.2 Accelerating Hardware

Slow software algorithms can be accelerated with the use of custom instructions,
dedicated hardware accelerators. The following techniques can increase processor
efficiency in running your application:

• Custom instructions—Use custom instructions to augment the Nios II processor's
arithmetic and logic unit (ALU) with a block of dedicated, user-defined hardware to
accelerate a task-specific, computational operation. This hardware accelerator is
associated with a user-defined operation code, which the application software can
call.

For information about how to create a custom instruction, refer to Nios II Custom
Instruction User Guide.

• Hardware accelerators—Use hardware accelerators for bulk processing operations
that can be performed independently of the Nios II processor. Hardware
accelerators are custom, user-defined peripherals designed to speed up the
processing of a specific system task. They increase the efficiency of operations
that are performed independently of the Nios II processor.

For more information about hardware acceleration, refer to the Hardware
Acceleration and Coprocessing chapter.

Related Links

• Hardware Acceleration and Coprocessing on page 275

• Nios II Custom Instruction User Guide

7.2.2.2.3 Improving Data Movement

If your application performs many sequential data movement operations, a DMA
peripheral might increase the efficiency of these operations. Intel provides the
following two DMA peripherals for your use:

• DMA—Simple DMA peripheral that can perform single operations before being
serviced by the processor. For more information about using the DMA peripheral,
refer to “HAL Peripheral Services” .

For information about the DMA peripheral, refer to the DMA Controller Core
chapter in the Embedded Peripherals IP User Guide.

• Scatter-Gather DMA (SGDMA)—Descriptor-based DMA peripheral that can perform
multiple operations before being serviced by processor.

For more information, refer to the Altera Modular Scatter-Gather DMA chapter in
the Embedded Peripherals IP User Guide.

Related Links

• Embedded Peripherals IP User Guide

• HAL Peripheral Services on page 166
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7.2.3 Accelerating Interrupt Service Routines

To increase the efficiency of your interrupt service routines, determine how you can
speed up the tasks they perform. First analyze the current performance and identify
the slowest parts of your interrupt dispatch and handler time, then determine whether
you can accelerate any part of your interrupt handling.

7.2.3.1 Analyzing the Problem

The total amount of time consumed by an interrupt service routine is equal to the
latency of the HAL interrupt dispatcher plus the interrupt handler running time. Use
the following methods to profile your interrupt handling:

• Interrupt dispatch time—Calculate the interrupt handler entry time using the
method found in design files that accompany the Using Tightly Coupled Memory
with the Nios II Processor Tutorial on the Intel literature pages.You can download
the design files from the Documentation: Tutorials page of the Intel website.

• Interrupt service routine time—Use a timer to measure the time from the entry to
the exit point of the service routine.

Related Links

• Using Tightly Coupled Memory with the Nios II Processor Tutorial

• Documentation: Tutorials

7.2.3.2 Accelerating the Interrupt Service Routine

The following techniques can increase interrupt handling efficiency when running your
application:

• General software performance enhancements—Apply the general techniques
for improving your application's performance to the ISR and ISR handler. Place
the .exception code section in a faster memory region, such as tightly coupled
memory.

• IRQ priority—Assign an appropriate priority to the hardware interrupt. The
method for assigning interrupt priority depends on the type of interrupt controller.

— With the internal interrupt controller, set the interrupt priority of your
hardware device to the lowest number available. The HAL ISR service routine
uses a priority based system in which the lowest number interrupt has the
highest priority.

— With an external interrupt controller (EIC), the method for priority
configuration depends on the hardware. Refer to the EIC documentation for
details.

• Custom instruction and tightly coupled memories—Decrease the amount of
time spent by the interrupt handler by using the interrupt-vector custom
instruction and tightly coupled memory regions.

• VIC block—The VIC offers high-performance, low-latency interrupt handling. The
VIC prioritizes interrupts in hardware and outputs information about the highest-
priority pending interrupt. When external interrupts occur in a system containing a
VIC, the VIC determines the highest priority interrupt, determines the source that
is requesting service, computes the requested handler address (RHA), and
provides information, including the RHA, to the processor. For more information,
refer to the "Vectored Interrupt Controller Core" chapter of the Embedded
Peripheral IP User Guide.
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For more information about how to improve the performance of the Nios II exception
handler, refer to the Exception Handling chapter of the Nios II Gen2 Software
Developer's Handbook.

Related Links

• Embedded Peripherals IP User Guide

• Exception Handling

7.2.4 Reducing Code Size

Reducing the memory space required by your application image also enhances
performance. This section describes how to measure and decrease your code footprint.

7.2.4.1 Analyzing the Problem

The easiest way to analyze your application's code footprint is to use the GNU Binary
Utilities tool nios2-elf-size. This tool analyzes your compiled .elf binary file and
reports the total size of your application, as well as the subtotals for
the .text, .data, and .bss code sections. The example below shows a nios2-elf-
size command response.

Example 33. Example Use of nios2-elf-size Command

> nios2-elf-size -d application.elf
text data bss dec hex filename
203412 8288 4936 216636 34e3c application.elf
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7.2.4.2 Reducing the Code Footprint

The following methods help you to reduce your code footprint:

• Compiler options—Setting the -Os flag for the GCC causes the compiler to apply
size optimizations for code size reduction. Use the
hal.make.bsp_cflags_optimization BSP setting to set this flag.

• Reducing the HAL footprint—Use the HAL BSP library configuration settings to
reduce the size of the HAL component of your BSP library file. However, enabling
the size-reduction settings for the HAL BSP library often impacts the flexibility and
performance of the system.

The table below lists the configuration settings for size optimization. Use as many
of these settings as possible with your system to reduce the size of BSP library
file.

Table 42. BSP Settings to Reduce Library Size

BSP Setting Name Value

hal.max_file_descriptors 4

hal.enable_small_c_library True

hal.sys_clk_timer None

hal.timestamp_timer None

hal.enable_exit False

hal.enable_c_plus_plus False

hal.enable_lightweight_device_driver_api True

hal.enable_clean_exit False

hal.enable_sim_optimize False

hal.enable_reduced_device_drivers True

hal.make.bsp_cflags_optimization \"-Os\"

You can reduce the HAL footprint by adjusting BSP settings as shown in the table.

• Removing unused HAL device drivers—Configure the HAL with support only for
system peripherals your application uses.

— By default, the HAL configuration mechanism includes device driver support
for all system peripherals present. If you do not plan on accessing all of these
peripherals using the HAL device drivers, you can elect to have them omitted
during configuration of the HAL BSP library by using the set_driver
command when you configure the BSP project.

— The HAL can be configured to include various software modules, such as the
NicheStack networking stack and the read-only zip file system, whose
presence increases the overall footprint of the application. However, the HAL
does not enable these modules by default.
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7.3 Memory Optimization

This section presents tips and tricks that can be helpful when implementing any type
of memory in your Qsys system. These techniques can help improve system
performance and efficiency.

7.3.1 Isolate Critical Memory Connections

For many systems, particularly complex ones, isolating performance-critical memory
connections is beneficial. To achieve the maximum throughput potential from memory,
connect it to the fewest number of masters possible and share those masters with the
fewest number of slaves possible. Minimizing connections reduces the size of the data
multiplexers required, increasing potential clock speed, and also reduces the amount
of arbitration necessary to access the memory. You can use bridges to isolate memory
connections.

Related Links

Avalon-MM Byte Ordering on page 33

7.3.2 Match Master and Slave Data Width

Matching the data widths of master and slave pairs in Qsys is advantageous.
Whenever a master port is connected to a slave of a different data width, Qsys inserts
adapter logic to translate between them. This logic can add additional latency to each
transaction, reducing throughput. Whenever possible, try to keep the data width
consistent for performance-critical master and slave connections. In cases where
masters are connected to multiple slaves, and slaves are connected to multiple
masters, it may be impossible to make all the master and slave connections the same
data width. In these cases, you should concentrate on the master-to-slave
connections which have the most impact on system performance.

For instance, if Nios II processor performance is critical to your overall system
performance, and the processor is configured to run all its software from an SDRAM
device, you should use a 32-bit SDRAM device because that is the native data width of
the Nios II processor, and it delivers the best performance. Using a narrower or wider
SDRAM device can negatively impact processor performance because of greater
latency and lower throughput. However, if you are using a 64-bit DMA to move data to
and from SDRAM, the overall system performance may be more dependent on DMA
performance. In this case, it may be advantageous to implement a 64-bit SDRAM
interface.

7.3.3 Use Separate Memories to Exploit Concurrency

When multiple masters in your system access the same memory, each master is
granted access only some fraction of the time. Shared access may hurt system
throughput if a master is starved for data.

If you create separate memory interfaces for each master, they can access memory
concurrently at full speed, removing the memory bandwidth bottleneck. Separate
interfaces are quite useful in systems which employ a DMA, or in multiprocessor
systems in which the potential for parallelism is significant.

In Qsys, it is easy to create separate memory interfaces. Simply instantiate multiple
on-chip memory components instead of one. You can also use this technique with
external memory devices such as external SRAM and SDRAM by adding more, possibly
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smaller, memory devices to the board and connecting them to separate interfaces in
Qsys. Adding more memory devices presents tradeoffs between board real estate,
FPGA pins, and FPGA logic resources, but can certainly improve system throughput.
Your system topology should reflect your system requirements.

Related Links

Avalon-MM Byte Ordering on page 33

7.3.4 Understand the Nios II Instruction Master Address Space

This Nios II processor instruction master cannot address more than a 256 MByte span
of memory; consequently, providing more than 256 MBytes to run Nios II software
wastes memory resources. This restriction does not apply to the Nios II data master,
which can address as many as 2 GBytes.

7.3.5 Test Memory

You should rigorously test the memory in your system to ensure that it is physically
connected and set up properly before relying on it in an actual application. The Nios II
Embedded Design Suite ships with a memory test example which is a good starting
point for building a thorough memory test for your system.
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7.4 Accelerating Nios II Networking Applications

This section describes key optimizations you can use to accelerate the performance of
your Nios II networking application. In addition, it describes how the different parts of
a Nios II Ethernet-enabled system work together, how the interaction of these parts
corresponds to the total networking performance of the system, and how to
benchmark the system.

Ethernet is a standard data transport paradigm for embedded systems across all
applications because it is inexpensive, abundant, mature, and reliable.

As seen in the empirical benchmark results, you can achieve minor performance
increases in your Ethernet system by applying a single hardware optimization;
however, achieving significant Ethernet performance increases involves applying
several hardware optimizations together in the same system.

Consider using the following optimizations for your Ethernet system, in decreasing
order of importance:

• Using a DMA engine for moving data to and from the Ethernet device

• Increasing the overall system frequency, including components such as the
processor, DMA peripherals, and memory

• Using low-latency memory for Nios II software execution

• Using a custom hardware peripheral to accelerate the network checksum

• Using fast packet memory to store Ethernet data

Finally, the overall performance you can achieve from your Ethernet application
depends on the nature of the application itself. This section provides you with general
techniques to accelerate Nios II Ethernet applications, but the final measure of
success is whether your application meets the performance goals you establish.

7.4.1 Downloading the Ethernet Acceleration Design Example

The Nios II ethernet acceleration design example is an integral part of this section.
The design example shows how the acceleration techniques can be applied in a real
working Nios II system. The readme.doc file, located in the design example folder,
provides additional hands-on instructions that demonstrate how to implement the
acceleration techniques in a Nios II system. The readme.doc file also provides
performance benchmark results.

You can find the Nios II ethernet acceleration design example on the Nios II Ethernet
Acceleration Design Example page of the Intel website.

Download the design example file, and unzip the file into a working directory.

Related Links

Nios II Ethernet Acceleration Design Example

7.4.2 The Structure of Networking Applications

This section describes the different parts of a general networking application.
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7.4.2.1 Ethernet System Hierarchy

The figure below shows the flow of information from an embedded networking
application to the Ethernet.

Figure 75. The Ethernet System Hierarchy
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The structure presented in the figure shows a typical embedded networking system. In
general, a user application performs a job that defines the goal of the embedded
system, such as controlling the speed of a motor or providing the UI for an embedded
kiosk. The networking stack provides the application with an application programming
interface (API), usually the Sockets API, to send networking data to and from the
embedded system.

The stack itself is a software library that converts data from the user application into
networking packets, and sends the packets through the networking device.
Networking stacks tend to be very complicated software state machines that must be
able to send data using a wide variety of networking protocols, such as address
resolution protocol (ARP), transmission control protocol (TCP), and user datagram
protocol (UDP). These stacks generally require a significant amount of processing
power.

The stack uses the Ethernet device to move data across the physical media. Most of a
networking stack’s interaction with the networking device consists of shuttling
Ethernet packets to and from the Ethernet device.

You must consider the link layer, or physical media over which the Ethernet datagrams
travel, when constructing a network enabled system. Depending on the location of the
embedded system, the Ethernet datagrams might traverse a wide variety of physical
links, such as 10/100 Mb twisted pair and fiber optic. Additionally, the datagrams
might experience latency if they traverse long distances or need to pass through many
network switches in order to arrive at their destination.

7.4.2.2 Relationships Between Networking System Elements

The total throughput performance of an embedded networking system is highly
dependent on the interaction of the user application, networking stack, Ethernet
device (and driver), as well as the physical connection for the networking link. Making
substantial performance improvements in the network throughput often depends on
optimizing the performance of all these elements simultaneously.

In general, your networking application has some criteria for performance that are
either achieved or not. However, a good first order approximation for determining the
viability of your networking application is to remove the user application from the
system and measure the total networking performance. This method provides you
with an upper bound for total network performance, which you can use to create your
networking application. This section uses a simple benchmark program that
determines the raw throughput rate of TCP and UDP data transactions. This
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benchmark application does very little apart from sending or receiving data through
the networking stack. It therefore provides us with a good approximation of the
maximum networking performance achievable.

7.4.2.3 Finding the Performance Bottlenecks

A wide variety of tools are available for analyzing the performance of your Nios II
embedded system and finding system bottlenecks. In this section, many of the
techniques presented to increase overall system (and networking) performance were
discovered through the use of the following tools:

• GNU profiler

• Timer peripheral IP core

• Performance counter IP core

This section does not explore the use of these tools or how they were applied to find
networking bottlenecks in the system. For more information about finding general
performance bottlenecks in your Nios II embedded system, refer to AN:391 Profiling
Nios II Systems.

Related Links

AN:391 Profiling Nios II Systems

7.4.3 The User Application

In an embedded networking system, the application layer is the part of the system
where your key task is performed. In general, this application layer performs some
work and then uses the network stack to send and receive data. In a classic
embedded networking system, your application executes on the same processor as
the network stack, and competes with it for computation resources.

To increase the throughput of your networking system, decrease the time your
application spends completing its task between the function calls it makes to the
networking stack. This technique has a twofold benefit. First, the faster your
application runs to completion before sending or receiving data, the more function
calls it can make to the networking stack (Sockets API) to move data across the
network. Second, if the application takes less of the processor’s time to run, the more
time the processor has to operate the networking stack (and networking device) and
transmit the data.

7.4.3.1 User Application Optimizations

This section describes some effective ways to decrease the amount of time your
application uses the Nios II processor.
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7.4.3.1.1 Software Optimizations

• Compiler Optimization Level—Compile your application with the highest compiler
optimization possible. Higher optimizations result in denser, faster code, increasing
the computational efficiency of the processor.

• MicroC/OS-II Thread Priority—Make sure that your application task has the right
MicroC/OS-II priority level assigned to it. In general, the higher the priority of the
application, the faster it runs to completion. Balance the application’s priority
levels against the priority levels assigned to the NicheStack’s core tasks, discussed
in “Structure of the NicheStack Networking Stack”.

Note: This suggestion assumes that your application uses Intel’s recommended method for
operating the NicheStack Networking Stack, which requires using the MicroC/OS-II
operating system.

Related Links

Structure of the NicheStack Networking Stack on page 306

7.4.3.1.2 Hardware Optimizations

• Processor Performance—You can increase the performance of the Nios II processor
in the following ways:

— Computational Efficiency—Selecting the most computationally efficient Nios II
processor core is the quickest way to improve overall application performance.
The following Nios II processor cores are available, in decreasing order of
performance:

• Nios II/f—optimized for speed

• Nios II/e—conserves on-chip resources at the expense of speed

— Memory Bandwidth—Using low-latency, high speed memory decreases the
amount of time required by the processor to fetch instructions and move data.
Additionally, increasing the processor’s arbitration share of the memory
increases the processor’s performance by allowing the Nios II processor to
perform more transactions to the memory before another Avalon master port
can assume control of the memory.

— Instruction and Data Caches—Adding an instruction and data cache is an
effective way to decrease the amount of time the Nios II processor spends
performing operations, especially in systems that have slow memories, such
as SDRAM or double data rate (DDR) SDRAM. In general, the larger the cache
size selected for the Nios II processor, the greater the performance
improvement.

— Clock Frequency—Increasing the speed of the processor’s clock results in more
instructions being executed per unit of time. To gain the best performance
possible, ensure that the processor’s execution memory is in the same clock
domain as the processor, to avoid the use of clock-crossing adapters.

One of the easiest ways to increase the operational clock frequency of the
processor and memory peripherals is to use a pipeline bridge IP core to isolate
the slower peripherals of the system. With this peripheral, the processor,
memory, and Ethernet device are connected on one side of the bridge. On the
other side of the bridge are all of the peripherals that are not performance
dependent.
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• Hardware Acceleration—Hardware acceleration can provide tremendous
performance gains by moving time-intensive processor tasks to dedicated
hardware blocks in the system. The following list contains most common ways to
accelerate application level algorithms:

— Custom Instruction—Offload the Nios II processor by using hardware to
implement a custom instruction.

— Custom Peripheral—Create a block of hardware that performs a specific
algorithmic task, as a peripheral controlled by the Nios II processor.

Related Links

Hardware Acceleration and Coprocessing on page 275

7.4.3.1.3 The Sockets API

After tuning your application to become more computationally efficient (thereby
freeing more of the processor’s time for operating the networking stack), you can
optimize how the application uses the networking stack. This section describes how to
select the best protocol for use by your application and the most efficient way to use
the Sockets API.

Selecting the Right Networking Protocol

When using the Sockets API, you must also select which protocol to use for
transporting data across the network. There are two main protocols used to transport
data across networks: TCP and UDP. Both of these protocols perform the basic
function of moving data across Ethernet networks, but they have very different
implementations and performance implications. The table below compares the two
protocols.

Table 43. The UDP and TCP Protocols

Parameter Protocol

UDP TCP

Connection Mode Connectionless Connection-Oriented

In Order Data Guarantee No Yes

Data Integrity and Validation No Yes

Data Retransmission No Yes

Data Checksum Yes; Can be disabled Yes

In terms of just throughput performance, the UDP protocol is much faster than TCP
because it has very little overhead. The UDP protocol makes no attempt to validate
that the data being sent arrived at its destination (or even that the destination is
capable of receiving packets), so the network stack needs to perform much less work
in order to send or receive data using this protocol.

However, aside from very specialized cases where your embedded system can tolerate
losing data (for example, streaming multimedia applications), use the TCP protocol.

Note: Use the UDP protocol to gain the fastest performance possible; however, use the TCP
protocol when you must guarantee the transmission of the data.
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Improving Send and Receive Performance

Proper use of the Sockets API in your application can also increase the overall
networking throughput of your system. The following list describes several ways to
optimally use the Sockets API:

• Minimize send and receive function calls—The Sockets API provides two sets of
functions for sending and receiving data through the networking stack. For the
UDP protocol these functions are sendto() and recvfrom(). For the TCP
protocol these functions are send() and recv().

Depending on which transport protocol you use (TCP or UDP), your application
uses one of these sets of functions. To increase overall performance, avoid calling
these functions repetitively to handle small units of data. Every call to these
functions incurs a fixed time penalty for execution, which can compound quickly
when these functions are called multiple times in rapid succession. Combine data
that you want to send (or receive) and call these functions with the largest
possible amount of data at one time.

Note: Call the Socket API’s send and receive functions with larger buffer sizes to
minimize system call overhead.

• Minimize latency when sending data—Although the TCP Sockets send() function
can accept an arbitrary number of bytes, those bytes might not be immediately
sent as a packet. This situation is especially likely when send() is called with a
small number of bytes, because the networking stack attempts to coalesce these
small data chunks into a larger packet. Small data chunks are coalesced to avoid
congesting the network with many small packets (using the Nagle algorithm for
congestion avoidance). There is a solution, however, through the use of the
TCP_NODELAY flag.

Setting a socket’s TCP_NODELAY flag, with the setsockopt() function call,
disables the Nagle algorithm. The socket immediately sends whatever bytes are
passed in as a TCP packet. Disabling the Nagle algorithm can be a useful way to
increase network throughput in the case where your application must send many
small chunks of data very quickly.

Note: If you need to accelerate the transmission of small TCP packets, use the
TCP_NODELAY flag on your socket. You can find an example of setting the
TCP_NODELAY flag in the benchmarking application software in the Nios II
ethernet acceleration design example.

While disabling the Nagle algorithm usually causes smaller packets to be
immediately sent over the network, the networking stack might still coalesce some
of the packets into larger packets. This situation is especially likely in the case of
the Windows workstation platform. However, you can expect the networking stack
to do so with much lower frequency than if the Nagle algorithm were enabled.

The Zero Copy API

The NicheStack networking stack provides a further optimization to accelerate the
data transfers to and from the stack called the zero copy API. The zero copy API
increases overall system performance by eliminating the buffer management scheme
performed by the Socket API’s read and write function calls. The application manages
the send and receive data buffers directly, eliminating an extra level of data copying
performed by the Nios II processor.

Using the NicheStack Zero Copy API can accelerate your network application’s
throughput by eliminating an extra layer of copying.
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7.4.4 Structure of the NicheStack Networking Stack

The NicheStack networking stack is a highly-configurable software library designed for
communicating over TCP/IP networks. The version that Intel ships in the Nios II
Embedded Design Suite (EDS) is optimized for use with the MicroC/OS-II (RTOS), and
includes device driver support for the Altera Triple Speed Ethernet MegaCore function,
which serves as the media access control (MAC).

The NicheStack networking stack is extremely configurable, with the entire software
library utilizing a single configuration header file, called ipport.h.

7.4.4.1 General Optimizations

Because this section focuses on a single Nios II system, most of the optimizations
described in “User Application Optimizations” also improve the performance of the
NicheStack networking stack. The following optimizations also help increase your
overall network performance:

• Software optimizations

— Compiler optimization level

• Hardware optimizations

— Processor performance

• Computational efficiency

• Memory bandwidth

• Instruction and data caches

• Clock frequency

Related Links

User Application Optimizations on page 302

7.4.4.2 NicheStack Specific Optimizations

This section describes the targeted optimizations that you can use to increase the
performance of the NicheStack networking stack directly.

7.4.4.2.1 NicheStack Thread Priorities

Intel’s version of the NicheStack networking stack relies on the MicroC/OS-II operating
system’s threads to drive two critical tasks to properly service the networking stack.
These tasks (threads) are tk_nettick, which is responsible for timekeeping, and
tk_netmain, which is used to drive the main operation of the stack.

When building a NicheStack-based system in the Nios II EDS, the default run-time
thread priorities assigned to these tasks are: tk_netmain = 2 and tk_nettick = 3.
These thread priorities provide the best networking performance possible for your
system. However, in your embedded system you might need to override these
priorities because your application task (or tasks) run more frequently than these
tasks. Overriding these priorities, however, might result in performance degradation of
network operations, as the NicheStack networking stack has fewer processor cycles to
complete its tasks.
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Therefore, if you need to increase the priority of your application tasks above that of
the NicheStack tasks, make sure to yield control whenever possible to ensure that
these tasks get some processor time. Additionally, ensure that the tk_netmain and
tk_nettick tasks have priority levels that are just slightly less than the priority level
of your critical system tasks.

When you yield control, the MicroC/OS-II scheduler places your application task from
a running state into a waiting state. The scheduler then takes the next ready task and
places it into a running state. If tk_netmain and tk_nettick are the higher priority
tasks, they are allowed to run more frequently, which in turn increases the overall
performance of the networking stack.

Note: If your MicroC/OS-II based application tasks run with a higher priority level (lower
priority number) than the NicheStack tasks, remember to yield control periodically so
the NicheStack tasks can run. Tasks using the NicheStack services should call the
function tk_yield(). If they do not use the NicheStack services, the tasks should
call the function OSTimeDly().

7.4.4.2.2 Disabling Nonessential NicheStack Modules

Because the NicheStack networking stack is highly configurable, many modules are
available for you to optionally include. Some examples are an FTP client, an FTP
server, and a web server. Every module included in your system might result in some
performance degradation due to the overhead associated with having the Nios II
processor service these modules.

This degradation can happen because the main NicheStack task, tk_netmain,
periodically polls each of these modules. Also, these modules might insert time-based
callback functions, which further decrease the overall performance of the networking
stack.

You can control what is enabled or disabled in the NicheStack networking stack
through a series of macro definitions in the ipport.h configuration file. In addition, the
NicheStack software component inserts some definitions in the system.h file
belonging to the board support package (BSP). A list of NicheStack features and
modules to disable, which can increase system performance, follows. (To disable a
particular feature or module, ensure that its #define statement is present in neither
the ipport.h file nor the system.h configuration file.)

The NicheStack features to disable include the following items:

• IN_MENUS—enable NicheTool command interface

• NPDEBUG—enable debugging aids

• MEM_WRAPPERS—debugging aid to validate memory

• QUEUE_CHECKING—debugging aid to validate memory queues

• MULTI_HOMED—not needed if only one networking device

• IP_ROUTING—not needed if only one networking device
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The NicheStack modules to disable include the following items:

• PING_APP—enable ping support

• UDPSTEST, TCP_ECHOTEST—enable echotest programs

• FTP CLIENT, FTP SERVER—enable FTP client/server

• TELNET_SVR—enable Telnet server

• USE_SYSLOG_TASK—enable statistics collection

• SMTP_ALERTS—enable email client

• INCLUDE_SNMP—enable simple network management protocol (SNMP) server

• DNS_SERVER—enable domain name system (DNS) server

Disabling unused NicheStack networking stack features and modules in your system
helps increase overall system performance.

The NicheStack networking stack also supports a wide variety of features and modules
not listed here. Refer to the NicheStack documentation and your ipport.h file for more
information.

7.4.4.2.3 Using Faster Packet Memory

You can increase the performance of the NicheStack networking stack by using fast,
low-latency memory for storing Ethernet packets. This section describes this
optimization and explains how it works.

Background

The NicheStack networking stack uses a memory queue to assemble and receive
network packets. To send a packet, the NicheStack removes a free memory buffer
from the queue, assembles the packet data into it, and passes this buffer memory
location to the Ethernet device driver. To receive the data, the Ethernet device driver
removes a free memory buffer, loads it with the received packet, and passes it back to
the networking stack for processing. The NicheStack networking stack allows you to
specify where its queue of buffer memory is located and how this memory allocation is
implemented.

By default, the Intel version of the NicheStack networking stack allocates this pool of
buffer memory using a series of calloc() function calls that use the system’s heap
memory. Depending on the design of the system, and where the Nios II system
memory is located, this allocation method could impact overall system performance.
For example, if your Nios II processor’s heap segment is in high latency or slow
memory, this allocation method might degrade performance.

Additionally, in the case where the Ethernet device utilizes direct memory access
(DMA) hardware to move the packets and the Nios II processor is not directly involved
in transmitting or receiving the packet data, then this buffer memory must exist in an
uncached region. Lack of buffer caching further degrades the performance because
the Nios II processor’s data cache is not able to offset any performance issues due to
the slow memory.

The solution is to use the fastest memory possible for the networking stacks buffer
memory, preferably a separate memory not used by the Nios II processor for
programmatic execution.
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Solution

The ipport.h file defines a series of macros for allocating and deallocating big and
small networking buffers. The macro names begin with BB_ (for “big buffer”) and LB_
(for “little buffer”). Following is the block of macros with the definitions in place for
Triple Speed Ethernet device driver support.

#define BB_ALLOC(size) ncpalloc(size)
#define BB_FREE(ptr) ncpfree(ptr)
#define LB_ALLOC(size) ncpalloc(size)
#define LB_FREE(ptr) ncpfree(ptr)

You can use these macros to allocate and deallocate memory any way you choose.
The Nios II ethernet acceleration design example redefines these macros to allocate
memory from on-chip memory (a fast memory structure inside the FPGA). This faster
memory results in various degrees of performance increase, depending on the system.
For detailed performance improvement figures, please refer to the readme.doc file
included in the design example.

The Intel version of NicheStack does not use the BB_FREE() or LB_FREE() function
calls. Therefore, any memory allocated with the BB_ALLOC() and LB_ALLOC()
function calls is allocated at run time, and is never freed.

Using fast, low-latency memory for NicheStack’s packet storage can improve the
overall performance of the system.

7.4.4.2.4 Super Loop Mode

Although the Intel-supported version of the NicheStack networking stack requires
MicroC/OS-II for its operation, you can configure the stack to run without an operating
system. In this mode of operation, MicroC/OS-II is replaced by an infinite loop that
services the stack and runs the user application.

Removing the MicroC/OS-II operating system from your system can result in slightly
higher networking performance, but this improvement comes at the expense of
additional complexity in the software design of your system. It is very easy to create
pathological systems where your application code consumes all of the processor’s
time, and without frequent calls to a stack servicing function, the effective networking
performance deteriorates.

Although the super loop system is another possible method of optimization, this
section does not attempt to benchmark it.

You can use the NicheStack networking stack without the MicroC/OS-II operating
system. Doing so can provide additional networking performance benefits. However,
Intel does not support this configuration.

7.4.5 Ethernet Device

An important parameter in the total performance of your Ethernet application is the
function and capabilities of the network interface device itself. The function of this
device is to translate the physical Ethernet packets into datagrams that can be
accessed by the stack. Therefore, its performance is critical to the overall performance
of your networking application.
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7.4.5.1 Link Speed

For most embedded networking applications, the network physical layer consists of
either 100BASE-TX or 1000BASE-T Ethernet, which uses twisted copper wires for the
transport medium. The maximum data transport rate (in one direction) for 100BASE-
TX is 100 Mbps, while 1000BASE-T can accommodate 1000 Mbps.

It is very difficult for an embedded networking device to completely use a 100 Mb link,
much less a 1000 Mb link. However, a faster link provides better performance most of
the time, because the 1000 Mb link has a larger overall carrying capacity for data. The
improvement is especially noticeable in cases where several different devices share
the link and use it simultaneously.

7.4.5.2 Network Interface (Altera Triple Speed Ethernet MegaCore Function)

The Nios II EDS supports the Altera Triple Speed Ethernet MegaCore function. The
Triple Speed Ethernet MegaCore function’s role is essentially to translate an
application’s Ethernet data into physical bits on the Ethernet link. The Triple Speed
Ethernet MegaCore function supports 10/100/1000 Mb networks. The table below lists
the key design parameters that impact network performance.

Table 44. Triple Speed Ethernet MegaCore Function

Parameter Altera Triple Speed Ethernet MegaCore Function

Type FPGA IP

Control Interface Avalon-MM

Data Interface Avalon-ST

Data Width (bits) 8, 32

Supported Link Speeds (Mbps) 10/100/1000

Recv FIFO Depth 64 to 65536 entries

Send FIFO Depth 64 to 65536 entries

DMA Altera Scatter-Gather DMA (required)

PHY Interface (Integrated) None

PHY Interface (External) MII (100 Mbps)
GMII (1000 Mbps)
RGMII(1000 Mbps)
SGMII (10/100/1000 Mbps)

The Triple Speed Ethernet MegaCore function is capable of sending and receiving
Ethernet data quickly because of the Scatter-Gather DMA peripherals. The Triple
Speed Ethernet MegaCore function also allows you to select from a flexible range of
send and receive FIFO depths.

7.4.5.3 NicheStack Device Driver Model

The NicheStack networking stack presents a simplified device driver model for
integrating Ethernet devices, and the Altera Triple Speed Ethernet MegaCore function
solution is fully optimized to support this model.

7 Optimizing Nios II Based Systems and Software

Embedded Design Handbook
310



In the Triple Speed Ethernet MegaCore function device driver, the Scatter-Gather DMA
peripherals are responsible for the movement of the Ethernet packet data to and from
the Triple Speed Ethernet MegaCore function.

The Scatter-Gather DMA peripherals can operate much more efficiently than the Nios
II processor for data movement operations (on a per clock basis), and therefore using
the Triple Speed Ethernet MegaCore function device driver results in an overall
performance increase in the system.

For information about the Triple Speed Ethernet MegaCore function, refer to the Triple
Speed Ethernet MegaCore Function User Guide. For information about the Scatter-
Gather DMA peripheral, refer to the Embedded Peripherals IP User Guide.

Related Links

• Triple Speed Ethernet MegaCore Function User Guide

• Scatter-Gather DMA Controller Core

7.4.6 Benchmarking Setup, Results, and Analysis

The previous sections describe several optimizations that you can use to increase the
performance of a networking system. This section describes a method to evaluate the
effectiveness of each one. The best way to evaluate the optimizations is to use a
benchmarking application that measures the impact of applying each optimization.

7.4.6.1 Overview

A simple benchmarking application measures the overall networking performance. This
application enables you to measure the Ethernet data transfer rate between two
systems, such as an Intel development board and a workstation using the TCP or UDP
protocols.

During a benchmarking test, one machine assumes the role of the sender and the
other machine becomes the receiver. The sender opens a connection to the receiver,
transmits a specified amount of data, and prints out a throughput measurement in
Mbps. Likewise, the receiver waits for a connection from the sender, begins receiving
Ethernet data, and, at the end of the data transmission, prints out the total
throughput in Mbps.

The benchmarking application has the simplest possible structure. Both the sender
and receiver parts of the program perform no additional work apart from sending and
receiving Ethernet data. Additionally, for standardization purposes, all network
operations use the industry standard Sockets API in their implementation.

Note: For more information about the benchmarking program, including detailed information
about how to build and operate it, refer to the readme.doc file in the Nios II ethernet
acceleration design example.

7.4.6.2 Test Setup

The benchmarking tests were conducted between a workstation and an Intel
development board. The Intel development board used was a Stratix® IV GX
development board. The workstation was lightly loaded, meaning that the only user
applications running were the benchmark program and the Nios II Software Build Tools
(SBT) for Eclipse.

7 Optimizing Nios II Based Systems and Software

Embedded Design Handbook
311

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_ethernet.pdf
https://documentation.altera.com/#/00081203-NT$NT00080824


The direct Ethernet connection between the two systems was implemented using a
single twisted-pair networking cable.

7.4.6.2.1 Test Systems

The benchmarking analysis demonstrates how changing key parameters in an
Ethernet system can lead to radical performance changes.

This benchmark test examines the merits of applying various optimizations to both the
Nios II processor and the NicheStack networking stack. The first parameter tested is
the effect of doubling the instruction and data cache sizes for the processor. The
second parameter tested is the effect of increasing the Nios II processor’s clock
frequency.

The test also measures the effect of using fast internal memory for packet storage.

7.4.6.3 Test Methodology

This section describes the parameters used in the benchmarking tests.

7.4.6.3.1 Ethernet Link Type

The Ethernet link selected to connect the workstation to the Nios II board uses a
single 100/1000 Mb cable in a point-to-point configuration (no hub or switch). This
choice mitigates the potential effects of an additional piece of networking hardware on
the test system.

In most networking applications, however, your system can be connected to another
host through one (or more) Ethernet hubs or switches. These extra connections can
increase the communication latency. The benchmark numbers present the idealized
performance of an almost perfect Ethernet connection.

7.4.6.3.2 Protocols Tested

All benchmark operations are conducted using the TCP protocol. The TCP protocol
guarantees that all data sent by the transmitter arrives at the receiver, ensuring that
the throughput numbers reported are legitimate.

The benchmark application can measure UDP transmission speeds, but does so
without accounting for lost or missing Ethernet packets. Therefore, the UDP test only
measures the speed at which the transmitter can send all of the data using the UDP
protocol, without considering whether the data arrived at the receiver.

7.4.6.3.3 Data Transmission Sizes

This series of tests uses a total data size of 100 megabytes (100,000,000 bytes). This
data size increases the total amount of time spent in the course of the test, to more
clearly capture the average performance of both the sender and receiver.

Furthermore, the tests use the largest TCP payload size for Ethernet packet
transmission (1458 bytes). This payload size provides an upper bound of Ethernet
performance, representing the best expected performance numbers achievable in the
design.
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Note: Because the benchmarking application uses the Sockets API, the payload size (1458
bytes) directly maps to the length parameter in the send() (TCP) and sendto()
(UDP) function calls. The following statement is an example of a send() function call
in TCP:

send(int <socket>, const void *<buffer>, size_t <length>, int <flags>);

7.4.6.3.4 Test Runs

For every Nios II configuration, the test measures the data transmission time and
average data throughput with the Nios II system as both the sender and the receiver.
The tests take three consecutive measurements and record the average of these runs
as the final measurement.

7.4.6.4 Nios II System Software Configuration

For every Nios II configuration, the test measures the data transmission time and
average data throughput with the Nios II system as both the sender and the receiver.
The tests take three consecutive measurements and record the average of these runs
as the final measurement.

7.4.6.4.1 NicheStack Networking Stack Configuration

The NicheStack networking stack is built with the default configuration. This
configuration provides a minimal set of general purpose functionality to enabled
networking operations using the TCP and UDP protocols.

Additionally, the following MicroC/OS-II thread priorities were selected for the two core
NicheStack tasks:

• tk_netmain = priority 2

• tk_nettick = priority 3

7.4.6.4.2 MicroC/OS-II Configuration

The default MicroC/OS-II configuration is used for the operation of the networking
stack. This configuration provides all the basic MicroC/OS-II services.

7.4.6.4.3 Benchmark Application

The benchmark application uses the Sockets API. The following configuration is used
for the application:

• benchmark application = priority 4

• benchmark initialization thread = priority 1

Note: For more information about the benchmark application and its operation, refer to the
Nios II ethernet acceleration design example.

7.4.6.4.4 General Application and System Library Settings

Both the benchmark application and the associated system library were compiled
using the Nios II GNU tool chain with the -03 optimization enabled. If the test cases
involve any changes to the run-time memory, the entire memory would be selected for
the application’s binary segments, such as .text, .data, and .bss.

7 Optimizing Nios II Based Systems and Software

Embedded Design Handbook
313



7.4.6.5 Workstation System Software

The workstation benchmark application is compiled using the GNU tool chain for the
Cygwin environment, targeting the x86 architecture. Because the workstation
benchmark application reuses much of the same source code base as the Nios II
application, it uses the Sockets API for conducting this test.

7.4.7 Nios II Test Hardware and Test Results

For details regarding the Nios II test hardware and test results, refer to the
readme.doc file included in the Nios II ethernet acceleration design example.
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7.5 Using Tightly Coupled Memory with the Nios II Processor
Tutorial

This document describes how to use tightly coupled memory in designs that include a
Nios® II processor and discusses some possible applications. It also includes a tutorial
that guides you through the process of building a Nios II system with tightly coupled
memory.

The Nios II architecture includes tightly coupled master ports that provide guaranteed
fixed low-latency access to on-chip memory for performance-critical applications.
Tightly coupled master ports can be connected to instruction memory and data
memory, to allow fixed low-latency read access to executable code as well as fixed
low-latency read or write access to data. Tightly coupled masters are dedicated
instruction or data master ports on the Nios II core, which is different from the
embedded processor’s instruction and data master ports.

This document assumes you are familiar with the Nios II tightly coupled memory. For
more information, refer to the Processor Architecture chapter in the Nios II Gen2
Processor Reference Handbook.

7.5.1 Reasons for Using Tightly Coupled Memory

You can implement one or more of the following functions or modules using tightly
coupled memory to enhance the performance of your system:

• Separate exception stack for use only while handling interrupts

• Fast data buffers

• Fast sections of code

— Fast interrupt handler

— Critical loop

• Constant access time that is guaranteed not to have arbitration delays

For programs with modest memory requirements, all of the code and data can be held
in a tightly coupled memory pair.

7.5.2 Tradeoffs

There are design tradeoffs when using tightly coupled memory, including the
following:

• You must balance the benefits of more general speed enhancement provided by a
cache, averaged over time, with the specific dedicated memory block consumed
by a tightly coupled memory whose sole purpose is to make a single part of the
code faster.

• Software guarantees that performance-critical code or data is located in tightly
coupled memory. That particular piece of code or data achieves high performance.
Locating the code within tightly coupled memory eliminates cache overhead such
as cache flushing, loading, or invalidating.

• You must divide on-chip memory equitably to provide the best overall combination
of tightly coupled instruction memory, tightly coupled data memory, instruction
cache, and data cache.
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7.5.3 Guidelines for Using Tightly Coupled Memory

This section details the guidelines and limitations that should be taken into
consideration when designing the hardware and software with tightly coupled memory.

7.5.3.1 Hardware Guidelines

The following guidelines apply to Nios II hardware designs that include tightly coupled
memory:

• Tightly coupled masters are presented as additional master ports on the Nios II
processor.

• An On-Chip Memory component is the only memory that can connect to a tightly
coupled master port on the Nios II core.

• A tightly coupled master on a processor must connect to exactly one on-chip
memory slave port. This slave port cannot be shared by any other master port.

• Each on-chip memory can be connected to only one tightly coupled master even if
it is a dual port memory.

• The availability of the data and instruction master ports for the tightly coupled
memory is dependent on the type of Nios II core used.

• When using the On-Chip Memory component as a tightly coupled memory for Nios
II, you must always create it as a RAM, not as a ROM. Tightly coupled memories
configured as ROM would result in failure.

• To conserve the logic elements, use one 2-kilobyte (KB) tightly coupled memory,
rather than two 1-KB tightly coupled memories.

The figure below is a block diagram of a simple Nios II system that includes tightly
coupled memories and other Qsys System Integration Tool components.

Figure 76. Nios II System with Tightly Coupled Instruction and Data Memory
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7.5.3.2 Software Guidelines

The following two guidelines apply to Nios II software that uses tightly coupled
memory:

• Software accesses tightly coupled memory addresses just like any other
addresses.

• Cache operations have no effect when targeting tightly coupled memory.

7.5.3.2.1 Locating Functions in Tightly Coupled Memory

Assigning data to a tightly coupled data memory also involves using a section
attribute. Alternatively, you can include the tightly coupled memory as a #define in
the system.h file. The name of the memory is followed by _BASE and is used as a
pointer to reference the tightly coupled data memory.

The software example in this tutorial provides a source code example showing how to
locate a particular source code function in a particular linker section. A function is
declared to reside within a linker section with the C section attribute in the file
timer_interrupt_latency.h. This C header file locates
timer_interrupt_latency_irq() in the .exceptions section as follows:

externvoid timer_interrupt_latency_irq (void* base, alt_u32 id)__attribute__ 
((section
(".exceptions")));

The Nios II Software Build Tools (SBT) creates linker sections for each memory module
in the system. A source code function can be located within a particular tightly coupled
instruction memory simply by assigning that function to the linker section created for
that tightly coupled instruction memory.

The Nios II SBT creates additional linker sections with address mappings that are
controlled by Qsys. For the .exceptions section, the physical address offset and
memory module in which to base that linker section is manipulated through Qsys. You
locate the .exceptions section in a memory module covered by a tightly coupled
data memory using the Exception Vector field found on the Core Nios II tab of the
configuration wizard.

For more information about the C section attribute, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter in the Nios II Software Developer’s
Handbook.

7.5.4 Tightly Coupled Memory Interface

The term tightly coupled memory interface refers to an Avalon-like interface that
connects one master to one slave. Refer to Figure 76 on page 316. Tightly coupled
memory interfaces connect tightly coupled masters to their tightly coupled slaves.
Tightly coupled memory interfaces are designed to be connected to one port of an on-
chip memory device. These devices are known as “altsyncrams” to Verilog HDL and
VHDL designers.
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7.5.4.1 Restrictions

You must observe the following restrictions when designing with tightly coupled
memories:

• Tightly coupled slaves must be on-chip memories.

• Only one master and one slave can be connected to a given tightly coupled
memory interface, which makes the tightly coupled memory interface a point-to-
point connection.

• Tightly coupled slaves have a data width of 32 bits. Tightly coupled memory
interfaces do not support dynamic bus sizing.

• Tightly coupled slaves have a read latency of one cycle, a write latency of zero
cycles, and no wait states.

When tightly coupled memory is present, the Nios II core decodes addresses internally
to determine if the requested instructions or data reside in tightly coupled memory. If
the address resides in tightly coupled memory, the Nios II core accesses the
instruction or data through the tightly coupled memory interface. Accessing tightly
coupled memory bypasses cache memory. The processor core functions as if cache
were not present for the address span of the tightly coupled memory. Instructions for
managing the cache do not affect the tightly coupled memory, even if the instruction
specifies an address in the range occupied by a tightly coupled memory.

7.5.4.2 Dual Port Memories

Each tightly coupled master connects to one tightly coupled slave over a tightly
coupled interface. For this reason, it is helpful to use dual port memories with the
tightly coupled instruction master as shown in Figure 76 on page 316. The tightly
coupled instruction master is incapable of performing writes because it accesses code
for execution only. Without a second memory port connected to an Avalon Memory-
Mapped (Avalon-MM) data master, the system does not have write access to the
tightly coupled instruction memory. Without write access, code cannot be downloaded
into the tightly coupled memory by the Nios II SBT for Eclipse, which makes
development and debugging difficult. Without a second port on the tightly coupled
instruction memory, no data master has access to the memory, which means you have
no way to view the contents. By making the tightly coupled instruction memory dual
port, the embedded processor’s data master can be connected to the second port,
allowing both reading and writing of data.

7.5.5 Building a Nios II System with Tightly Coupled Memory

This section provides a detailed list of instructions to create a Nios II system in Qsys
that uses two tightly coupled memories, one for instruction access and one for data
access. These two tightly coupled memories are connected to the Nios II processor as
shown in Figure 76 on page 316. Additionally, instructions are provided to build a
software project to exercise these tightly coupled memories. The output of the
software shows that the tightly coupled memories have much faster access times than
other on-chip memories.
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To build a Nios II system with tightly coupled memory, perform the following steps.
These steps are described more fully in the following sections.

1. Modify an existing reference design to include tightly coupled memories.

2. Create the tightly coupled memories in Qsys.

3. Connect the tightly coupled memories to the masters.

4. Position the tightly coupled memories in the Nios II processor’s address map.

5. Specify the Nios II exception address to access tightly coupled instruction
memory.

6. Add a performance counter.

7. Generate the hardware system.

8. Create a software project to exercise the tightly coupled memories.

9. Execute the software on the new hardware design.

10. Change the Tcl scripts and recompile the design to review how the timer settings
work.

7.5.5.1 Hardware and Software Requirements

The following hardware and software are required to perform this exercise:

• Nios II development tools version 11.0 or later

• Quartus Prime software

• One of the following Intel development kit boards:

— Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

— Embedded Systems Development Kit (ESDK), Cyclone III Edition

— Stratix® IV GX FPGA Development Kit

7.5.5.2 Modify the Example Design to Include Tightly Coupled Memories

First, create a new hardware reference design with tightly coupled memories that is
based on the Nios II Ethernet standard design example. To create this modified
reference design, perform the following steps:

1. Navigate to the Nios II Ethernet Standard Design Example web page and locate
the Nios II Ethernet Standard design example .zip file that corresponds to your
board.

2. Extract the files from the downloaded .zip file and copy the
niosii_ethernet_standard_<board> directory to a new directory named
standard_tcm.

3. In the Windows Start menu, choose Programs > Intel FPGA > Quartus Prime
<version> to run the Quartus Prime software.

4. On the File menu, click Open Project and browse to the standard_tcm
\niosii_ethernet_standard_<board>.qpf project file. Click Open.

5. On the Tools menu, click Qsys. When prompted, select
eth_std_main_system.qsys and click Open to open the Qsys design.

6. Double-click the cpu component in the list of available components on the
System Contents tab to open the Nios II processor configuration wizard.

7. Ensure that Nios II/f is selected on the Core Nios II tab.
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8. Click the Caches and Memory Interfaces tab.

9. Select the number of instruction master ports in the drop-down list next to
Number of tightly coupled instruction master port(s). In this example,
select 1 port.

10. Change the Instruction cache to 4 KB.

11. Select the number of instruction master ports in the drop-down list next to
Number of tightly coupled data master port(s). In this example, select 1
port.

12. Change the Data cache to 2 KB and Data Cache Line Size to 4 Bytes.

13. Click Finish to close the Nios II processor configuration wizard.

Two new master ports now appear under the cpu component called
tightly_coupled_instruction_master_0 and tightly_coupled_data_master_0.
These master ports are not yet connected to the slave ports.

7.5.5.3 Create the Tightly Coupled Memories

In this section you create two types of tightly coupled memories: a tightly coupled
instruction memory and a tightly coupled data memory.

1. In the Component Library tab, double-click On-Chip Memory in the On-Chip
subfolder of the Memories and Memory Controllers folder. The On-Chip
Memory configuration wizard appears.

2. To complete the configuration of this memory, specify the settings listed in the
table below.

3. In the Size and Memory initialization boxes, specify the settings listed in the table
below.

Table 45. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type RAM Turn this option on

Dual-Port Access Turn this option on

Read During Write Mode This option is DONT_CARE

Block type Auto

Size Memory Width 32

Total memory size 4 Kb

Read latency Slave s1 1

Slave s2 1

Memory initialization Initialize memory content Turn this option on

Enable non-default initialization file Leave this option off

Enable In-System Memory Content
Editor feature

Leave this option off

4. Click Finish to close the configuration wizard.

5. Click the System Contents tab and scroll down to the onchip_memory2_0
component.
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Note: You must name the components exactly as they appear in this tutorial. If
your component names differ from the names printed here, the software
example will not work.

6. Right-click onchip_memory2_0 and rename the component to
tightly_coupled_instruction_memory.

7. To configure a second on-chip memory, in the list of available memory
components, double-click On-Chip Memory (RAM or ROM). The On-Chip
Memory configuration wizard appears.

8. Configure the settings that are listed in the table below. Unlike the tightly coupled
instruction memory, this memory is single-port. Total memory size for tightly
coupled data memory is twice the size of tightly coupled instruction memory at 8
KB.

Table 46. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type RAM Turn this option on

Dual-Port Access Turn this option off

Read During Write Mode This option is DONT_CARE

Block type Auto

Size Memory Width 32

Total memory size 8 Kb

Read latency Slave s1 1

Memory initialization Initialize memory content Turn this option off

Enable non-default initialization file Leave this option off

Enable In-System Memory Content
Editor feature

Leave this option off

9. Click Finish to close the On-Chip Memory configuration wizard.

10. Rename the onchip_memory2_0 component to
tightly_coupled_data_memory.
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7.5.5.4 Connect and Position the Tightly Coupled Memories

To associate the masters with the tightly coupled memories, perform the following
steps:

1. To facilitate creating connections between the tightly coupled memory and the
Nios II processor, click each new tightly coupled memory and click Move Up to
move the individual memories just below the cpu component.

2. If necessary, click the + to expand the tightly_coupled_instruction_memory
component.

3. Using the connections panel in Qsys, connect the s1 port of
tightly_coupled_instruction_memory to the
tightly_coupled_instruction_master_0 component listed under the cpu
component. To connect a port, click the empty dot at the intersection of the s1
port and the port you want to connect.

4. Similarly, connect the s2 port of tightly_coupled_instruction_memory to the
cpu data_master port. This connection is shown in Figure 76 on page 316 as the
Avalon-MM connection between the Avalon-MM data master port and the Avalon-
MM slave port on the tightly coupled instruction memory. Port s2 of this dual-port
memory is an Avalon-MM slave port, not a tightly coupled slave port because s2
connects to an Avalon-MM master, which is not a tightly coupled master.

5. If necessary, click the + to expand the tightly_coupled_data_memory
component.

6. Connect the s1 port of tightly_coupled_data_memory to
tightly_coupled_data_master_0.

7. To change the tightly coupled memories to the same clock domain as the cpu,
follow these steps:

a. Click in the Clock column next to clk1 and clk2 for the s1 and s2 ports,
respectively, of tightly_coupled_instruction_memory. A list of available
clock signals appears.

b. Select the same clock domain as the cpu from the list of available clocks to
connect this clock to the slave ports.

c. Similarly, connect reset1 and reset2 for the s1 and s2 ports, respectively,
to clk_reset of the clock source.

d. Repeat steps a-c for tightly_coupled_data_memory.

8. In the Base column, enter the base addresses in the table below for all tightly
coupled memories.

Table 47. Base Addresses for Tightly Coupled Memories

Port Base

tightly_coupled_instruction_memory s1 0x20000000

tightly_coupled_instruction_memory s2 0x20000000

tightly_coupled_data_memory s2 0x20002000
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The end addresses automatically update to reflect the memory size that you
specified in the configuration wizard. The base address specification is important.
Tightly coupled memories must be mapped so that their addresses do not overlap
with the embedded processor’s memories and peripherals that are connected to its
Avalon-MM instruction and data masters.

Figure 77. Connections for Tightly Coupled Memories

To simplify address decoding, map the high-order address bit to a unique location.
By limiting the decoding logic to one bit, you minimize the effect of address
decoding on fMAX. The Nios II component works correctly even if the address map
is not optimal; however, it displays a warning during system generation.

As an example of optimal address mapping, if all the normal memories and
peripherals in your system occupy addresses below 0x2000000, mapping your
tightly coupled memories at addresses from 0x2000000 and above satisfies this
requirement.

9. To set the exception address of the Nios II processor, open the Nios II processor’s
configuration wizard. On the Core Nios II tab, in the Exception vector
memory: list, select tightly_coupled_instruction_memory_s1.

The address Offset fields are populated automatically and are indexed from the
base address specified for the memory module on the System Contents tab.

7.5.5.5 Add a Performance Counter

Add a performance counter peripheral so you can compare the performance of the
reads and writes to tightly coupled memory to other memories. To add the
performance counter, complete the following steps:

1. In the Component Library tab, click Peripherals to expand the list of available
components.

2. Under Debug and Performance, double-click Performance Counter Unit to
open the Performance Counter configuration wizard.

3. Click Finish, accepting the default setting of the 3 simultaneously-measured
sections.

4. Be sure that the component is named performance_counter.
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5. Move the component up just below the tightly coupled memory components.
Connect the control_slave port of the performance_counter to the cpu’s
data_master port. The figure below shows these connections.

6. In performance_counter, connect clk to the same clock domain as cpu and
reset to clk_reset of the clock source.

7. In the Base column, change the base address of performance_counter to
0x09000000.

Figure 78. Connections for the Performance Counter

7.5.6 Generate the Qsys System

To generate and compile the hardware system, perform the following steps:

1. In the Generation tab, click Generate. Click Save to save the changes in the
Qsys system.

2. In the Quartus Prime software, on the Processing menu, click Start
Compilation.

3. When the Quartus Prime software compilation is finished, on the Tools menu, click
Programmer to program the newly generated
niosii_ethernet_standard_<board>.sof into the FPGA.
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7.5.7 Run the Tightly Coupled Memories Examples from the Nios II
Command

To run the tightly coupled memories example from the Nios II command shell, perform
the following steps:

1. To open a Nios II command shell under Windows, in the Start menu, point to
Programs > Intel FPGA > Nios II EDS <version number>, and click Nios II
<version number> Command Shell.

2. Navigate to the working directory for your project. The following steps refer to this
directory as <project_directory>.

3. Ensure that the working directory and all subdirectories are writable by typing the
following command:

chmod -R +w . 

4. Download the tcm.zip file from the Intel web page for the Tightly Coupled
Memory tutorial and unzip it into the <project_directory> directory. The figure
below shows the directory structure for the unzipped files.

Figure 79. Project Directory after Unzipping the Files

5. Change to the software_examples/app/tcm_isr subdirectory of your
<project_directory> by typing the following command:

cd software_examples/app/tcm_isr

6. Create and build the application by typing the following command:

./create-this-app

7. The linker script file, linker.x in the bsp/timer_hal directory includes a new
isrs_region located in tightly coupled instruction memory which is adjacent to
the tightly_coupled_instruction_memory region. isrs_region Listing in
linker.x File on page 326 shows the new region.

8. The tcmisr.objdump in the app/tcm_isr directory defines the .isrs section
located in the tightly coupled instruction memory. isrs Section Listing in
tcm_isr.objdump File on page 326 part of this file.
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Example 34. isrs_region Listing in linker.x File

MEMORY
{
:
:
tightly_coupled_instruction_memory : ORIGIN = 0x20000120, LENGTH = 1664
timer_isrs_region : ORIGIN = 0x200007a0, LENGTH = 2048
:
:
}

Example 35. isrs Section Listing in tcm_isr.objdump File

Sections:
Idx Name     Size     VMA      LMA     File off    Algn
0 .entry     00000000  00000000  00000000 00001000    2**5
            CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .exceptions 000001a0  20000120  20000120 00013120    2**2
              CONTENTS, ALLOC, LOAD, READONLY, CODE

2 .isrs       000000c4  200007a0  200007a0 000137a0    2**2
              CONTENTS, ALLOC, LOAD, READONLY, CODE

3 .text       0000fea4  10000000  10000000 00001000    2**2
              CONTENTS, ALLOC, LOAD, READONLY, CODE

4 .rodata     00000650  1000fea4  1000fea4 00010ea4    2**2
              CONTENTS, ALLOC, LOAD, READONLY, DATA

5 .rwdata     00001ba0  100104f4  100104f4 000114f4    2**2
              CONTENTS, ALLOC, LOAD, DATA, SMALL_DATA

6 .bss        00000154  10012094  10012094 00013094    2**2
              ALLOC, SMALL_DATA

7.5.8 Program and Run the Tightly Coupled Memory Project

To program and run a tightly coupled memory project, perform the following steps:

1. To open a terminal session to capture messages from the Nios II processor, type
the following command:

nios2-terminal

If your development board includes more than one JTAG cable, you must specify
which cable you are communicating with as an argument to the nios2-terminal
command. To do so, first type the following command:

jtagconfig -r

Figure 80. jtagconfig Output
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Figure 80 on page 326 shows some sample output from the jtagconfig command.
This output shows that the active JTAG cable is number 1. Substitute the number
of your JTAG cable for the <cable_number> variable in the following command:

nios2-terminal -c <cable_number>

2. In your first shell, enter the following command if you have a single JTAG cable:

nios2-download -g tcm_isr.elf

For development boards with more than one JTAG cable, enter the following
command:

nios2-download -c <cable_number> -g tcm_isr.elf

Figure 81 on page 327 is a printout of the statistics that shows the higher speeds
obtained by leveraging tightly coupled memories. Note that the number of clock
cycles for tightly coupled memory is very similar to that of the cached memory.
The result demonstrates that tightly coupled memories allow fixed low-latency
read access to executable code as well as fixed low-latency read, write, or read
and write access to data.

Note: The timing numbers output varies between Nios development boards.

Figure 81. Tightly Coupled Memory versus Cache Example Real-Time Measures

7.5.9 Understanding the Tcl Scripts

The following sections describe creating special memory regions for the timer memory
interrupt service routines and timer definitions and locating the exception stack in the
tightly coupled memory.

7.5.9.1 Timer Memory

The timer_memory_section.tcl script is located in the bsp/timer_hal directory.
This Tcl script reserves 2048 bytes of the tightly coupled instruction memory. The
reserved space is used to store the timer interrupt service routines.
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The timer_memory_section.tcl script takes the tightly_coupled_instruction
memory region and separates out 2048 bytes of the memory region into a new region
called timer_isr_region. The next line of code adds a section mapping the .isrs
section to the timer_isr_region.

# Create tightly_coupled_memory region.
add_memory_region tightly_coupled_instruction_memory $slave $offset $new_span
# Create a second region called timer_isr memory_region.
add_memory_region timer_isrs_region $slave $split_offset $split_span
# Create memory mapping to map .isrs to timer_isrs_region.
add_section_mapping .isrs timer_isrs_region

The timer_interrupt_latency.h file is also updated to reflect the change in the
section mapping of the timer_interrupt_latency_irq() timer interrupt service
routine to .isrs instead of .exceptions. The timer interrupt service routines are
now stored in the timer_isr_region.

The interrupt service routines must be located in the new .isrs section. Otherwise,
the linker uses the default setting, defeating the purpose of declaring a special
memory section for the interrupt service routine.

To locate the interrupt service routines in the new .isrs section, complete the following
steps:

1. Add a section mapping to map the .isrs section to the newly added memory
region.

2. Edit your source files to ensure the interrupt service routines are mapped to the
new memory section.

3. Compile your project files and check the linker.x and tcm_isr.objdump files to
ensure that the section mapping and memory regions are declared correctly and
contain the interrupt service routine.

Note: For more information about linker memory regions, refer to the Nios II Software Build
Tools chapter in the Nios II Software Developer’s Handbook.

7.5.9.2 Exception Stack

The timer_memory_section.tcl script locates the exception stack in the
tightly_coupled_data_memory region.

Example 36. Exception Stack

# Locate the exception stack to tightly coupled data memory.
set_setting hal.linker.enable_exception_stack TRUE
set_setting hal.linker.exception_stack_memory_region_name 
tightly_coupled_data_memory.
aset_setting hal.linker.exception_stack_size 1024

7.5.9.3 Timer Definitions

The following sections describe peripheral_subsystem_sys_clk_timer and
peripheral_subsystem_high_res_timer.
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7.5.9.3.1 peripheral_subsystem_sys_clk_timer

The timer_definition.tcl script is located in the bsp/timer_hal directory. The script
defines the timers as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer none

This script is essential for the clocks definitions. The software driver
hal.sys_clk_timer must be driven by the hardware clock named
peripheral_subsystem_sys_clk_timer. Connecting hal.sys_clk_timer to
any other hardware timer results in a compilation error. The following exercise
demonstrates this point.

1. Delete or rename the Makefile in the app/tcm_isr folder. Then delete or rename
public.mk from the bsp/timer_hal folder.

2. Open the timer_definition.tcl file and change
peripheral_subsystem_sys_clk_timer to
peripheral_subsystem_high_res_timer as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_high_res_timer
set_setting hal.timestamp_timer none

3. Save timer_definition.tcl.

4. Return to your shell and recreate the application by typing:

./create-this-app

5. The figure below shows the error. Setting hal.sys_clk_timer to any other timers
except for peripheral_subsystem_sys_clk_timer results in the same error
message.

Figure 82. Error Message after Changing the hal.sys_clk_timer

7.5.9.3.2 peripheral_subsystem_high_res_timer

The hardware timer called peripheral_subsystem_high_res_timer calculates
interrupt latency. timer_interrupt_latency_init(), defined in
timer_interrupt_latency.c, installs an interrupt service routine to handle
peripheral_subsystem_high_res_timer. Therefore,
peripheral_subsystem_high_res_timer must not be tied to the software
timestamp driver, hal.timestamp_timer; it is set to none. Because
peripheral_subsystem_sys_clk_timer is used for hal.sys_clk_timer, it
must not be used for hal.timestamp_timer.
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The following exercise shows this point:

1. If you have not already done so, delete or rename Makefile in the app/tcm_isr
folder. Delete or rename public.mk in the bsp/timer_hal folder.

2. Open the timer_definition.tcl file and change the setting of
hal.timestamp_timer from none to
peripheral_subsystem_high_res_timer as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer peripheral_subsystem_high_res_timer

3. Save timer_definition.tcl.

4. Return to your shell and recreate the application by typing the following
command:

./create-this-app

5. The figure below shows the error that you get. Setting hal.timestamp_timer to
peripheral_subsystem_sys_clk_timer or peripheral_subsystem_high_res_timer
results in the same error message. Setting hal.timestamp_timer to other hardware
timers in the system will not result in the error message in Figure 8.

Figure 83. Error Message after Changing the hal.timestamp_timer
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7.6 Document Revision History

Table 48. Optimizing Nios II Based Systems and Software Chapter Revision History

Date Version Changes

June 2017 2017.06.12 Section added:
• Using Tightly Coupled Memory with the Nios II Processor Tutorial on

page 315

December 2016 2016.12.19 Initial release.
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