
6Creating a System With Qsys

2013.11.4

QII51020 Subscribe Send Feedback

Qsys is a system integration tool included as part of the Quartus® II software. Qsys captures system-level
hardware designs at a high level of abstraction and automates the task of defining and integrating customized
HDL components. These components include IP cores, verification IP, and other design modules. Qsys
facilitates design reuse by packaging and integrating your custom components with Altera® and third-party
IP components. Qsys automatically creates interconnect logic from the high-level connectivity you specify,
thereby eliminating the error-prone and time-consuming task of writing HDL to specify system-level
connections.

Qsys is more powerful if you design your custom components using standard interfaces. By using standard
interfaces, your components inter-operate with the components in the Qsys Library. In addition, you can
take advantage of bus functional models (BFMs), monitors, and other verification IP to verify your design.

Qsys supports Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), and AMBA APB™ 3
(version 1.0) interface specifications. Qsys does not support AXI4-Lite.

Qsys provides the following advantages when designing a system:

• Automates the process of customizing and integrating components
• Supports up to 64-bit addressing
• Supports modular system design
• Supports visualization of systems
• Supports optimization of interconnect and pipelining within the system
• Fully integrated with the Quartus II software

Related Information

• Avalon Interface Specifications

• AMBA Protocol Specifications

• Creating Qsys Components

• Qsys Interconnect

Component Interface Support
Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51020
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51020%202013.11.4)%20Creating%20a%20System%20With%20Qsys&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys components can include the following types of interfaces:

• Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

• Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that streamunidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

• Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

• Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

• Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

• Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Understanding the Qsys Design Flow
Figure 6-1 illustrates a Qsys design flow in which you create a custom IP component and package your
custom HDL as a component using the Component Editor or manually creating a _hw_tcl file. In this
bottom-up design flow, you simulate your custom IP before integrating it with other components as a Qsys
system and complete Quartus II project.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Understanding the Qsys Design Flow6-2 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-1: Qsys Design Flow

No

No

Yes

Yes

Simulation at Unit-Level,
Possibly Using BFMs

Debug Design

Does
Simulation Give
Expected Results?

Debug Design

Does
Simulation Give
Expected Results?

Complete System, Add and
Connect All IP Components,
Define Memory Map If
Needed

Perform System-Level
Simulation

Generate Qsys
System

Yes

No

Modify Design or
Constraints

Does
HW Testing Give
Expected Results? Qsys System Complete

Constrain, Compile
in Quartus II Generating .sof

Download .sof to PCB
with Altera FPGA

Create Component
Using Component Editor, or
by Manually Creating the

_hw.tcl File

1

2

3

5
8

9

10

6

7

4

In an alternative design flow, you can begin by designing the Qsys system, and then define and instantiate
custom Qsys components, clarifying system requirements earlier in the design process.

Related Information
Creating Qsys Components

Creating a Qsys System
You can create a Qsys system in the Quartus II software by selecting Qsys System File in the New dialog
box, or clicking Tools > Qsys. To open a previously created Qsys design, click Open on the File menu in
the Quartus II software window, or the Qsys window.

Altera CorporationCreating a System With Qsys

Send Feedback

6-3Creating a Qsys System
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Creating Qsys Components

Component Interface Tcl Reference

Adding and Connecting System Contents
The System Contents tab displays the components that you add to your system, and allows you to connect
the interfaces of the modules.

Adding Components
To add a component to your system, select the component in the Library, and then click Add.

When you select a component type and clickAdd, the new instance is added to your system, and a parameter
editor opens that allows you to customize the new instance. The new instance appears in the SystemContents
tab, as well as the Hierarchy tab

You can type some or all of the component’s name in the Library search box to help locate a particular
component type. For example, you can type memory to locate memory-mapped components, or axi to
locate AXI interconnect components.

Connecting Components
When you add connections to a Qsys system, you can connect the interfaces of the modules in the System
Contents tab. The individual signals in each interface are connected by the Qsys interconnect when the
HDL for the system generates. You connect interfaces of compatible types and opposite directions. For
example, you can connect a memory-mapped master interface to a slave interface, and an interrupt sender
interface to an interrupt receiver interface.

Possible connections between interfaces in the system show as gray lines and open circles. When you make
a connection, Qsys draws the connection line in black, and fills the connection circle. To make a connection,
click the open circle at the intersection of the two interface names. Clicking a filled-in circle removes the
connection.

When you are done adding connections in your system, you can deselect Allow Connection Editing in the
right-click menu, which puts the Connections column into read-only mode and hides the possible
connections. Figure 6-2 illustrates the Connections column.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Adding and Connecting System Contents6-4 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-2: Connections Column in the Systems Contents Tab

Related Information
Connecting Components

Filtering Components
You can use the Filters dialog box to filter the display of your system in the System Contents tab. You can
filter the display of your system by interface type, instance name, or by using custom tags. For example, you
can view only instances that includememory-mapped interfaces, instances that are connected to a particular
Nios II processor, or temporarily hide clock and reset interfaces to simplify the display.

Related Information
Filters Dialog Box

Managing Views
The View menu allows you to select and open any view (tab). Qsys views allow you to review your design
from different perspectives. Some views allow you to focus on a particular part of the system, while other
views show the same data in another way. Making selections in the system-level views updates other views,
and shows the other views in the context of the system-level selection.

For example, selecting cpu_0 in the Hierarchy tab updates the Parameters tab to show the parameters for
cpu_0.

When you double-click a message in the Messages tab, Qsys selects the associated element in the
relevant view to facilitate debugging.

Note:

When you create a new Qsys system, the Library, Hierarchy, and System Contents tabs appear by default.
You can arrange your system workspace by dragging and dropping, and then grouping tabs in an order
appropriate to your design process. All tabs are dockable and you can close, hide, or minimize tabs that you
are not using. Minimized tabs appear minimized in the docking area below the menu bar. Tool tips on tab
corners display possible workspace arrangements, for example, disconnecting or restoring a tab to the Qsys
workspace.

Altera CorporationCreating a System With Qsys

Send Feedback

6-5Filtering Components
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_connect_comps.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_filter.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you save theQsys system, the current view arrangement is saved, andwhen you open theQsys system,
the last saved view arrangement is restored. You can use the Reset View Layout command on the View
menu to restore the Qsys workspace to its default configuration.

Qsys contains some views which are not documented and appear on the View menu as "Beta". The
purpose in presenting these views is to allow designers to explore their usefulness in Qsys system
development.

Note:

Using the Hierarchy Tab
TheHierarchy tab is a full systemhierarchical navigator, which expands the system contents to showmodules,
interfaces, signals, contents of subsystems, and connections.

The graphical interface of the Hierarchy tab displays a unique icon for each element represented in the
system, including interfaces, directional pins, IP blocks, and system icons that show exported interfaces and
the instances of components thatmake up a system, as shown in Figure 6-3. In this figure, context sensitivity
between the views is also shown with the ram_master selection highlighted in both the SystemContents
and Hierarchy tabs.

Figure 6-3: Hierarchy Tab Expanding Elements in the System Contents Tab

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Hierarchy Tab6-6 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Hierarchy tab to browse, connect, and parameterize IP in your system. The Hierarchy tab
allows you to drive changes in other views and interact with your system in more detail. As shown in Figure
6-3, the Hierarchy tab expands each interface that appears on the System Contents tab and allows you to
view the subcomponents, associated elements, and signals for each interface. Use the Hierarchy tab to focus
on a particular area of your system; coordinating selections in the Hierarchy tab with open views in your
workspace. Reviewing your system using the Hierarchy tab in conjunction with relevant views is also useful
during the debugging phase because you can contain and focus your debugging efforts to a single element
in your system.

The Hierarchy tab provides the following information and functionality:

• The connections between signals.
• The names of signals included in exported interfaces.
• Right-click menu to connect, edit, add, remove, or duplicate elements in the hierarchy.
• The internal connections of Qsys subsystems that are included as components. In contrast, the System

Contents tab displays only the exported interfaces of Qsys subsystems included as components.

Using the Parameters Tab
The Parameters tab allows you to review and change component parameters.

In the Parameters tab, Qsys displays the parameter editor for the current selection in the Hierarchy tab.
When you double-click a component in the System Contents tab, Qsys opens a new window and displays
the Parameters, Block Symbol, and Presets tabs together in a single window.

With theParameters tab open, when you click an element in theHierarchy tab, Qsys displays the parameter
editor for the selected element.

In the parameter editor, you can change the name as it appears on the System Contents tab for top-level
instances. Changes you make on the Parameters tab are immediately reflected on open views in your
workspace.

If the current selection is for an interface in the system, theParameters tab also allows you to review interface
timing. Figure 6-4 shows the timing for the Avalon-MM DMA write master for the PCI Express Subsystem
Example. Qsys display the the read and write waveforms at the bottom of the Parameters tab.

Altera CorporationCreating a System With Qsys

Send Feedback

6-7Using the Parameters Tab
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-4: Avalon-MM Write Master Timing Waveforms Available on the Parameters Tab

Related Information

• PCI Express Subsystem Example on page 6-32

Using the Presets Tab
In this view, Qsys displays the presets for the currently selected component.

The Presets tab allows you to create, modify, and save custom component or IP core parameter values as a
preset file. You can then apply the parameter values in the preset file to the current component that you are
parameterizing.

Related Information

• Presets Editor (Qsys)

Working With Presets for Supported IP Components
Some components provide preset configurations. If the component you are adding has presets available,
then the Presets Editor appears in the editor window and lists presets that you can apply to your component,
depending on the design protocol. When you apply a preset to a component, the parameters with specific
required values for the protocol are automatically set for you.

You can also access the Presets Editor by clicking View > Presets.Note:

You can search for text to filter the Presets list. For example, if you select the DDR3 SDRAM Controller
with UniPHY component, and then type 1g micron 256, the Presets list shows only those presets that
apply to the 1gmicron 256filter request. Presets whose parameter valuesmatch the current parameter settings
are shown in bold.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Presets Tab6-8 2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Selecting a preset does not prevent you from changing any parameter to meet the requirements of your
design. Clicking Update allows you to update parameter values for a custom preset. The Update Preset
dialog box displays the default value, which you can edit, and the current value, which is static.

You can also create your own preset by clicking New. When you create a preset, you specify a name,
description and the list of parameters whose values are set by the preset. You can remove a preset from the
Quartus II project directory by clicking Delete.

Related Information
Presets Editor

Using the Block Symbol Tab
In this view, Qsys displays the block symbol for the currently selected element.

When the Block Symbol view is open, Qsys displays a graphical representation of the element selected in
the Hierarchy or System Contents tabs. In the Block Symbol tab, the Show signals options allows you to
turn on of off signal graphics, if applicable.

The Block Symbol tab reflects changes made in other views.

Using the Address Map Tab
The AddressMap tab provides a table including the memory-mapped slaves in your design and the address
range that each connected memory-mapped master uses to address each slave.

The table shows the slaves on the left and masters across the top, with the address span of the connection
shown in each cell. If there is no connection between a master and a slave, the table cell is empty.

You can design a system where two masters access a slave at different addresses. If you use this feature, the
Base and End address columns of the System Contents tab are labeled "mixed" rather than providing the
address range.

Follow these steps to change or create a connection between master and slave components:

1. In Qsys, click the Address Map tab.
2. Locate the table cell that represents the connection between the master and slave component pair.
3. Either type in a base address, or update the current base address in the cell.

The base address of a slave component must be a multiple of the address span of the component.
This restriction is part of the Qsys interconnect to allow the address decoding logic to be efficient,
and to achieve the best possible fMAX.

Note:

Using the Clock Tab
The Clocks tab defines the Name, Source, and frequency (MHz) of each clock in your system.

Click Add to add a new clock to the system.

Using the Project Settings Tab
The Project Settings tab allows you to view and change the properties of your Qsys system.

Table 6-1: System-Level Parameters Available on the Project Settings Tab

DescriptionParameter Name

Specifies the Altera device family.Device Family

Altera CorporationCreating a System With Qsys

Send Feedback

6-9Using the Block Symbol Tab
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionParameter Name

Specifies the target device for the selected device family.Device

Specifies the default implementation for automatically inserted clock crossing
adapters. The following choices are available:

• Handshake–This adapter uses a simple hand-shaking protocol to propagate
transfer control signals and responses across the clock boundary. This
methodology uses fewer hardware resources than the FIFO type because each
transfer is safely propagated to the target domain before the next transfer can
begin. The Handshake adapter is appropriate for systems with low throughput
requirements.

• FIFO–This adapter uses dual-clock FIFOs for synchronization. The latency of
the FIFO-based adapter is a couple of clock cycles more than the handshaking
clock crossing component. However, the FIFO-based adapter can sustain higher
throughput because it supports multiple transactions at any given time. The
FIFO-based clock crossers require more resources. The FIFO adapter is
appropriate for memory-mapped transfers requiring high throughput across
clock domains.

• Auto–If you select Auto, Qsys specifies the FIFO adapter for bursting links,
and the Handshake adapter for all other links.

Clock crossing adapter
type

Specifies the maximum number of pipeline stages that Qsys may insert in each
command and response path to increase the fMAX at the expense of additional
latency. You can specify between 0–4 pipeline stages, where 0 means that the
interconnect has a combinational data path. Choosing 3 or 4 pipeline stages may
significantly increase the logic utilization of the system. This setting is specific for
each Qsys system or subsystem, meaning that each subsystem can have a different
setting. Note that the additional latency is for both the command and response
directions.

You can manually adjust this setting in the Memory-Mapped
Interconnect tab accessed by clicking Show System With Qsys
Interconnect command on the System menu.

Note:

Limit interconnect
pipeline stages to

A unique integer value that is set to a timestamp just before Qsys system generation
that Qsys uses to check for software compatibility.

Generation Id

Qsys generates a warning message if the selected device family and target device do not match the
Quartus II software project settings. Also, when you open Qsys from within the Quartus II software,

Note:

the device type in your Qsys project is replaced with the selected device in your open Quartus II
software project.

Related Information
Manually Controlling Pipelining in the Qsys Interconnect on page 6-20

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Using the Project Settings Tab6-10 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Instance Parameters Tab
The Instance Parameters tab allows you to define parameters for a Qsys system. You can use instance
parameters to modify a Qsys system when you use the system as a subcomponent in another Qsys system.
The higher-level Qsys system can assign values to these instance parameters.

The Instance Script on the Instance Parameters tab defines how the specified values for the instance
parameters should affect your Qsys design subcomponents. The instance script allows you to make queries
about the instance parameters you define and set the values of the parameters for the subcomponents in
your design.

When you click Preview Instance, Qsys creates a preview of the current Qsys system with the specified
parameters and instance script, and shows the parameter editor for the instance. This command allows you
to see how an instance of this system appears when you use it in another system. The preview instance does
not affect your saved system.

To use instance parameters, the components or subsystems in your Qsys system must have parameters that
can be set when they are instantiated in a higher-level system. Many components in the Library have
parameters that you can set when adding the component to your system. If you create your own IP
components, you use the _hw.tcl file to specify which parameters can be set when the component is added
to a system. If you create hierarchical Qsys systems, each Qsys system in the hierarchy can include instance
parameters to pass parameter values through multiple levels of hierarchy.

Related Information
Working with Instance Parameters in Qsys

Creating an Instance Script
The first command in an instance scriptmust specify the Tcl command version for the script. This command
ensures the Tcl commands behave identically in future versions of the tool. Use the following Tcl command
to specify the version of the Tcl commands, where <version> is the Quartus II software version number,
such as 13.1:

package require -exact qsys <version>

To use Tcl commands that work with instance parameters in the instance script, you must specify the
commandswithin a Tcl procedure called a composition callback. In the instance script, you specify the name
for the composition callback with the following command:

set_module_property COMPOSITION_CALLBACK <name of callback procedure>

Specify the appropriate Tcl commands inside the Tcl procedure with the following syntax:

proc <name of procedure defined in previous command> {}
{#Tcl commands to query and set parameters go here}

Use Tcl commands in the procedure to query the parameters of a Qsys system, or to set the values of the
parameters of the subcomponents instantiated in the system.

Altera CorporationCreating a System With Qsys

Send Feedback

6-11Using the Instance Parameters Tab
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-2: Supported Tcl Commands Used in Instance Scripts

DescriptionValueCommand Name

Get the names of all defined
parameters (as a space-separated
list).

Noneget_parameters

Get the value of a parameter.<parameter name >get_parameter_value

Get the names of parameters on a
child instance that can be
manipulated by the parent (as a
space-separated list).

<instance name>get_instance_parameters

Get the value of a parameter for a
child instance.

<instance name>get_instance_parameter_
value

Send a message to the user of the
component, using one of the
message levels Error, Warning,
Info, or Debug. Enclose text with
multiple words in quotation
marks.

<message level> <message text>send_message

Set a parameter value for a child
instance.

<instance name> <parameter name>
<parameter value>

set_instance_parameter_
value

You can use standard Tcl commands to manipulate parameters in the script, such as the set command to
create variables, or the expr command for mathematical manipulation of the parameter values.

Example 6-1 shows an instance script of a system that uses a parameter calledpio_width to set thewidth
parameter of a parallel I/O (PIO) component. Note that the script combines theget_parameter_value
and set_instance_parameter_value commands using brackets.

Example 6-1: Instance Script Example

Request a specific version of the scripting API
package require -exact qsys 13.1

Set the name of the procedure to manipulate parameters:
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {

Get the pio_width parameter value from this Qsys system and
pass the value to the width parameter of the pio_0 instance

set_instance_parameter_value pio_0 width \

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Creating an Instance Script6-12 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

[get_parameter_value pio_width]
}

Related Information
Component Interface Tcl Reference

Using the Interconnect Requirements Tab
The Interconnect Requirements tab allows you to assign interconnect requirements for the system or an
interface. The Interconnect Requirements assignments influence Qsys interconnect generation.

Interconnect Requirements settings also appear in other tabs. For instance, the Limit interconnect pipeline
stages option appears on the Project Settings tab.

Selections in the Setting and Value lists vary depending on your selection in the Identifier column.

Configuring Interconnect Requirements for the System
Selecting $system in the Identifier list on the Interconnect Requirements tab allows you to apply
system-wide interconnect assignments.

Table 6-3: Settings and Values for the $system Identifier

ValueSetting

You can specify between 0–4 pipeline stages, where 0
means that the interconnect has a combinational data
path. Choosing 3 or 4 pipeline stagesmay significantly
increase the logic utilization of the system. This setting
is specific for eachQsys systemor subsystem,meaning
that each subsystem can have a different setting. Note
that the additional latency is added once on the
command path, and once on the response path.

Limit interconnect pipeline stages to—Specifies the
maximum number of pipeline stages that Qsys may
insert in each command and response path to increase
the fMAX at the expense of additional latency.

Altera CorporationCreating a System With Qsys

Send Feedback

6-13Using the Interconnect Requirements Tab
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ValueSetting

• Handshake–This adapter uses a simple hand-
shaking protocol to propagate transfer control
signals and responses across the clock boundary.
This methodology uses fewer hardware resources
because each transfer is safely propagated to the
target domain before the next transfer can begin.
TheHandshake adapter is appropriate for systems
with low throughput requirements.

• FIFO–This adapter uses dual-clock FIFOs for
synchronization. The latency of the FIFO-based
adapter is a couple of clock cycles more than the
handshaking clock crossing component.However,
the FIFO-based adapter can sustain higher
throughput because it supports multiple transac-
tions at any given time. The FIFO-based clock
crossers requiremore resources. TheFIFO adapter
is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

• Auto–If you select Auto, Qsys specifies the FIFO
adapter for bursting links, and the Handshake
adapter for all other links.

Clock crossing adapter type—Specifies the default
implementation for automatically inserted clock
crossing adapters.

True or FalseAutomate default slave insertion—Specifies whether
you want Qsys to automatically insert a default slave
for undefinedmemory region accesses during system
generation.

Configuring Interconnect Requirements for an Interface
Selecting an interface in the Identifier list on the Interconnect Requirements tab allows you to apply
interface interconnect assignments.

ValueSetting

• Non-secure
• Secure
• Secure ranges
• TrustZone-aware

You can also set these valuess in the Security
column in the System Contents tab.

Note:

Security

Allows you to type in an address valid range.Secure address ranges

True or FalseAdd performance monitor

Creating Hierarchical Systems
Qsys supports team-based and hierarchical system design.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Configuring Interconnect Requirements for an Interface6-14 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can include any Qsys system as a component in another Qsys system. In a team-based design flow, you
can have one or more systems in your design developed simultaneously by other team members, decreasing
time-to-market for the complete design.

Figure 6-5 shows the top-level of a Qsys hierarchical design that implements a PCI Express™ to Ethernet
bridge. This example combines separate PCI Express and Ethernet subsystems with Altera’s DDR3 SDRAM
Controller with UniPHY IP core.

Figure 6-5: Top-Level for a PCI Express to Ethernet Bridge

DDR3
SDRAM

Ethernet
Subsystem

Ethernet

Embedded Cntl

PCI Express
Subsystem

Qsys System
PCIe to Ethernet Bridge

PCIe

CSR
Mem
Mstr

Mem
Slave

PHY
Cntl

Mem
Mstr

CSR

DDR3
SDRAM
Controller

Hierarchical system design in Qsys offers the following advantages:

• Enables team-based, modular design by dividing large designs into subsystems.
• Enables design reuse by allowing you to use any Qsys system as a component.
• Enables scalability by allowing you to instantiate multiple instances of a Qsys system.

Adding Systems to the Library
Any Qsys system is available for use as a component in other Qsys systems.

Figure 6-6 shows the library, including thepcie_subsystem as a component in the library for theFigure
6-10 example system. To include systems as components in other designs, you can add the system to the
library, or include the directory for the system in the IP search path for Qsys.

Altera CorporationCreating a System With Qsys

Send Feedback

6-15Adding Systems to the Library
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-6: Qsys Library

Creating a Component Based on a System
TheExport Systemas hw.tcl Component command on the Filemenu allows you to save the system currently
open inQsys as an _hw.tcl file in the currentworking directory. The saved system appears as a new component
in the System category under Project in the Qsys Library.

Qsys 64-Bit Addressing Support
Qsys interconnect supports up to 64-bit addressing for all Qsys interfaces and components, with a range of:
0x0000 0000 0000 0000 to 0xFFFF FFFF FFFF FFFF, inclusive.

In Qsys, address parameters appear in the Base and End columns on the System Contents tab, on the
AddressMap tab, in the parameter editor, and in validationmessages. TheQsys GUI displays asmany digits
as needed in order to display the top-most set bit, for example, 12 hex digits for a 48-bit address.

A Qsys system can have multiple 64-bit masters, with every master having its own address space. You can
share slaves among masters and masters can map slaves in different ways; for example, one master can
interact with slave 0 at base address 0000_0000_0000, and another master can see the same slave at base
address c000_000_000.

Qsys supports 64-bit addresses for narrow-to-wide and wide-to-narrow transactions across Avalon-MM
and AXI interfaces.

Quartus II debug tools that provide access to the state of an addressable system via the Avalon-MM
interconnect are also 64-bit compatible and process within a 64-bit address space, including a JTAG to
Avalon master bridge.

For more information about 64-bit support, refer toAddress Span Extender inCreating a Systemwith Qsys.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Creating a Component Based on a System6-16 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Creating a System with Qsys

Creating Secure Systems (TrustZones)
TrustZone is the security extension of theARMarchitecture. It includes the concept of secure and non-secure
transactions, and a protocol for processing between the designations. TrustZone security support is a part
of the Qsys interconnect.

In Qsys, you can set memory-mapped interfaces to secure, non-secure, or TrustZone-aware. AXI masters
are always treated as TrustZone-aware. Unless specified, all othermaster and slave interfaces (such as Avalon-
MM) are treated as non-secure, by default.

Qsys provides compilation-time TrustZone support for non-TrustZone-aware components, for example,
when anAvalonmaster needs to communicate with a secure AXI slave. For example, the designer can specify
whether the connection point is secure or non-secure at compilation time. You can specify secure address
ranges on memory slaves, if a per-interface security setting is not sufficient.

For TrustZone-aware masters, the interconnect uses the master's AxPROT signal to determine the security
status of each transaction.

Table 6-4 summarizes secure and non-secure access between master, slave, and memory components in
Qsys. Per-access refers to allowing a TrustZone-aware master to allow or disallow a particular access (or
transactions).

Table 6-4: Secure and Non-Secure Access Between Master, Slave, and Memory Components

Non-TrustZone-aware Master

Non-Secure

Non-TrustZone-aware Master

Secure

TrustZone-aware MasterTransaction Type

OKOKOKTrustZone-aware slave/
memory

Not allowedOKPer-accessNon-TrustZone-aware
slave (secure)

OKOKOKNon-TrustZone-aware
slave (non-secure)

Not allowedOKPer-accessNon-TrustZone-aware
memory (secure region)

OKOKOKNon-TrustZone-aware
memory (non-secure
region)

If amaster issues transactions that fall into the per-access or not allowed cells, as described in the table above,
your design must contain a default slave. A transaction that violates security is rerouted to the default slave
and subsequently terminated with an error. You can connect any slave as the default slave, which allows it
to respond to the master with errors. You can share the default slave between multiple masters. You have
one default slave for each interconnect domain, which is a group of connected memory-mapped masters

Altera CorporationCreating a System With Qsys

Send Feedback

6-17Creating Secure Systems (TrustZones)
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and slaves that share the same interconnect. Use the altera_axi_default_slave component as the
default slave because this component has the required TrustZone features.

For more information about interconnect domains, refer to Qsys Interconnect.Note:

In Qsys, you can achieve an optimized secure system by partitioning your design. For example, for masters
and slaves under the same hierarchy, it is possible for a non-securemaster to initiate continuous transactions
resulting in unsuccessful transfer to a secure slave. In the case ofmemory aliasing, youmust carefully designate
secure or non-secure address maps to maintain reliable data.

Related Information

• Qsys Interconnect

Managing Secure Settings in Qsys
To create a secure design, you must first add masters and slaves and the connections between them. After
you establish connections between the masters and slaves, you can then set the security options, as required,
with options in the Security column.

On the SystemContents tab, in the Security column, the following selections are available for master, slave,
and memory components:

• Non-secure—Master issues only non-secure transactions. There is no security available for the slave.
• Secure—Master issues only secure transactions. For the slave, Qsys prevents non-secure transactions

from reaching the slave, and routes them to the default slave for the master that issued the transaction.
• Secure Ranges—Slave only, the specified address ranges within the slave's address span are secure; all

others are not. The format is a comma-separated list of inclusiveLow:inclusiveHigh addresses, for example,
0x0:0xfff,0x2000:0x20ff.

• TrustZone-aware—Master issues either secure or non-secure transactions at run-time. The slave accepts
either secure or non-secure transactions at run-time.

After setting security options for the masters and slaves, you must identify those masters that require a
default slave before generation. To designate a slave as the default slave, turn onDefault Slave in the Systems
Contents tab. A master can have only one default slave.

The Security and Default Slave columns in the SystemContents tab are hidden by default. You can
turn them on with the right-click menu in the System Contents header.

Note:

Understanding Compilation-Time Security Configuration Options
The following compile-time configurations are available when creating secure designs that havemixed secure
and non-secure components:

• Masters that support TrustZone and are connected to slaves that are compile-time secure. This configu-
ration requires a default slave.

• Slaves that support TrustZone and are connected to masters that have compile-time secure settings. This
configuration does not require a default slave.

• Master connected to slaves with secure address ranges. This configuration requires a default slave.

Accessing Undefined Memory Regions
When a transaction from a master targets a memory region that is not specified in the slave memory map,
it is known as an "access to an undefined memory region." To ensure predictable response behavior when

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Managing Secure Settings in Qsys6-18 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

this occurs, you can add a default slave to the design. All undefined memory region accesses are then routed
to the default slave, which then terminates the transaction with an error response.

You can connect any memory-mapped slave as a default slave. Altera recommends that you have only one
default slave for each domain in your design. Accessing undefinedmemory regions can occur in the following
cases:

• When there are gaps within the accessible memory map region that are within the addressable range of
slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is mapped to the master.
• When a non-secured transaction is accessing a secured slave. This applies to only slaves that are secured

at compilation time.
• When a read-only slave is accessed with a write command, or a write-only slave is accessed with a read

command.

To designate a slave as the default slave, for the selected component, turn on Default Slave on the Systems
Content tab.

If you do not specify the default slave, Qsys automatically assigns the slave at the lowest address
within the memory map for the master that issues the request as the default slave.

Note:

Viewing the Qsys Interconnect
The System with Qsys Interconnect window allows you to see the contents of the Qsys interconnect before
you generate your system. In this view of your system, you can view a graphical representation of the generated
interconnect. Qsys converts connections between interfaces to interconnect logic during system generation.

You access the System with Qsys Interconnect window by clicking Show System With Qsys Interconnect
command on the System menu.

The system with Qsys Interconnect window consists of the following tabs:

• System Contents—Displays the original instances in your system, as well as the inserted interconnect
instances. Connections between interfaces are replaced by connections to interconnect where applicable.

• System Inspector—Displays a system hierarchical navigator, expanding the system contents to show
modules, interfaces, signals, contents of subsystems, and connections.

• Memory-Mapped Interconnect—allows you to select amemory-mapped interconnectmodule and view
its internal command and response networks. You can also insert pipeline stages to achieve timing closure.

The SystemContents and SystemInspector tabs are read-only. Edits that you apply on theMemory-Mapped
Interconnect tab are automatically updated on the Interconnect Requirements tab.

Using the Memory-Mapped Interconnect Tab
The Memory-Mapped Interconnect tab in the System with Qsys Interconnect window is a graphical
representation of command and response datapaths in your system. These datapaths allow you finer control
over pipelining in the interconnect. Qsys displays separate graphs for the command and response datapaths.
You can access the datapaths by clicking their respective tabs in the Memory-Mapped Interconnect tab.

Each node element in a graph can represent either amaster or slave that communicates over the interconnect,
or an interconnect sub-module. Each edge in a graph is an abstraction of connectivity between elements,
and its direction represents the flow of the commands or responses.

Altera CorporationCreating a System With Qsys

Send Feedback

6-19Viewing the Qsys Interconnect
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ClickHighlightPath to better identify edges and paths betweenmodules. Turn on ShowPipeline Locations
to add greyed-out registers on edges where pipelining is allowed in the interconnect.

You must have more than one module selected in order to highlight a path.Note:

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking Show System With Qsys
Interconnect command on the System menu.

To increase interconnect frequency, you should first try increasing the value of theLimit interconnect
pipeline stages to option on the Project Settings tab. You should only consider manually pipelining

Note:

the interconnect if changes to this option do not improve frequency, and you have tried all other
options to achieve timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

1. In the Project Settings tab, first try increasing the value of the Limit interconnect pipeline stages to
option until it no longer gives significant improvements in frequency, or until it causes unacceptable
effects on other parts of the system.

2. In the Quartus II software, compile your design and run timing analysis.
3. Identify the critical path through the interconnect and determine the approximate mid-point. The

following is an example of a timing report where the critical path is located in the interconnect.

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. System > Show System With Qsys Interconnect.
5. In the Memory-Mapped Interconnect tab, select the interconnect module that has the critical path. You

can determine the name of the interconnect module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all pipelinable locations in the interconnect. You can
right-click a pipelinable location to open a menu that allows you to insert or remove a pipeline stage.

7. Find the pipelinable location that is closest to the mid-point of the critical path. The names of blocks in
the memory-mapped interconnect view correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline stage, and then click Insert Pipeline.
9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat

the manual pipelining process again until timing requirements are met.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Manually Controlling Pipelining in the Qsys Interconnect6-20 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Warning messages are displayed at generation time if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the Remove Stale Pipelines
option button in the Memory-Mapped Interconnect tab. Altera recommends not making changes to
the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys might not be valid in a future version.

Related Information
Qsys System Design Components

Configuring Interconnect Requirements for the System on page 6-13

Integrating Your Qsys Design with the Quartus II Software
To integrate a Qsys system into a Quartus II project, you must add one of the following files to your Quartus
II project (but not both) on the Files tab in the Settings dialog box.

• Quartus II IP File (.qip)—Qsys generates a .qip file when you generate your Qsys design. Integrating
your Qsys design with your Quartus II project using the .qip file is preferable when you want full control
over generated files and Quartus II compilation phases. If you want to manage the HDL generation for
your Qsys system, you generate your Qsys system first, then add the .qip file to your Quartus II project.

• Qsys System File (.qsys)—Integrating your Qsys design with your Quartus II project by adding the .qsys
design file to your Quartus II project is more convenient for cases when there is no customization or
scripts in the design flow. If you do not want to generate your Qsys system manually, add the .qsys file
to your Quartus II project. You can add one or more top-level .qsys files to your Quartus II project.

When integrating your Qsys designs with your Quartus II software project, you should decide on
which integration flow you want to use (either adding the .qsys file, or the .qip file to your Quartus

Note:

II project, but not both), and then maintain a consistent integration flow throughout development.
Mixing integration flows might result in two sets of generated output files, at which point you would
then have to keep track of which one is currently in use. The Quartus II software generates an error
message during compilation if you add both the .qip and .qsys files to your Quartus II project.

Related Information

• Managing Files in a Project

• Searching for Component Files to Add to the Library on page 6-39

• Generating a Qsys System on page 6-23

Integrating with the .qsys File
To integrate your Qsys designs with the Quartus II software using the .qsys files, you create your designs in
Qsys, save the design files as <qsys design name>.qsys, and then add the .qsys file(s) to your Quartus II
project. When the Quartus II software starts the Analysis & Synthesis phase, it processes the .qsys files and
generates the necessary HDL and system description files needed to compile your design.

You can add multiple .qsys files to a Quartus II project. Qsys stores the files generated from each .qsys file
in the /db/<qsys file name> directory under the Quartus II project directory.

Altera CorporationCreating a System With Qsys

Send Feedback

6-21Integrating Your Qsys Design with the Quartus II Software
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
http://quartushelp.altera.com/current/mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When a Qsys design file includes an IP component which is outside of the project directory, the directory
of the .qsys file, or the /ip subdirectoy, you must add these dependency paths to the Qsys IP Search Path
before compilation.

The following are design guidelines and warnings when integrating your Qsys designs with the
Quartus II software:

Note:

• When you integrate yourQsys designswith theQuartus II software using the .qsys file, youmustmanually
run any IP customization scripts at the appropriate stages of the Quartus II compilation process. There
is no automation support for running scripts between the Quartus II software compilation stages. The
Implementing and ParameterizingMemory IP reference describes running placement scripts for embedded
memory IP interfaces.

• Do not edit the files generated under the /ip/<qsys file name> directory, as they are overwritten during
subsequent runs of Analysis & Synthesis.

Related Information

• Implementing and Parameterizing Memory IP

Integrating with the .qip File
Qsys generates the Quartus II IP File (.qip) during system generation. If you choose to integrate your Qsys
design with your Quartus II project using the .qip file, after you generate your Qsys design, you must add
the .qip file to your Quartus II project.

The .qip file lists the files necessary for compilation and provides the Quartus II software with the required
information about your Qsys system. The .qip file is saved in the <qsys file name>/synthesis directory, and
includes references to the following information:

• HDL files in the Qsys system
• TimeQuest Timing Analyzer Synopsys Design Constraint Files (.sdc)
• Component definition files for archiving purposes

Setting Clock Constraints
Many IP cores include Synopsys Design Constraint (.sdc) files that provide timing constraints for the logic
in the IP design. Generated .sdc files are included in your Quartus II project with the .qip file. For your
top-level clocks and PLLs, you must provide clock and timing constraints in SDC format to direct synthesis
and fitting to optimize the design appropriately, and to evaluate performance against timing constraints.

You can specify a base clock assignment for each clock input in the TimeQuest GUI or with the
create_clock command, and then you can use the derive_pll_clocks command to define the
PLL clock output frequencies and phase shifts for all PLLs in the Quartus II project.

Figure 6-7 illustrates the .sdc commands required for the case of a single clock input signal called clk, and
one PLL with a single output.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Integrating with the .qip File6-22 2013.11.4

http://www.altera.com/literature/hb/external-memory/emi_parameters.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-7: Single Clock Input Signal

For this system, use the following commands in your .sdc file for the TimeQuest Timing Analyzer:

create_clock -name master_clk -period 20 [get_ports {clk}]
derive_pll_clocks

Related Information

• The Quartus II TimeQuest Timing Analyzer

Generating a Qsys System
The Generation dialog box allows you to choose options for generation of synthesis and simulation files.

Generating Output Files
Qsys system generation creates the interconnect between components and generates synthesis and simulation
files. You specify the files that youwant to generate in theGeneration dialog box. You can generate simulation
models, simulation testbench files, as well as HDL files for Quartus II synthesis, or a Block Symbol File (.bsf)
for schematic design.

For your simulation model and testbench system, you can select Verilog HDL or VHDL for the top-level
module language, which applies to the system's top-level definition and child instances that support generation
for the selected target language.

Altera CorporationCreating a System With Qsys

Send Feedback

6-23Generating a Qsys System
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For synthesis, you can select the top-level module language as Verilog HDL or VHDL, which applies to the
system’s top-level definition.

Qsys places the generated output files in a subdirectory of your project directory, along with an HTML report
file. To change the default behavior, on theGeneration tab, specify a new directory underOutputDirectory.

Figure 6-8: Qsys Generated Files Directory Structure

<qsys_design>

submodules

synthesis

simulation

testbench

simulation

submodules

submodules

Each time you generate your system,Qsys overwrites these files, therefore, you should not editQsys-generated
output files. If you have constraints, such as board-level timing constraints, Altera recommends that you
create a separate Synopsys Design Constraints File (.sdc) and include that file in your Quartus II project. If
you need to change top-level I/O pin names or instance name, Altera recommends you create a top-level
HDL file that instantiates the Qsys system, so that the Qsys-generated output is instantiated in your design
without any changes to the Qsys output files.

Qsys generates the files in listed in Table 6-5 to the <qsys design>/simulation folder.Note:

Table 6-5: Qsys Generated Files

DescriptionFile Name or Directory Name

The top-level Qsys system directory, in the Quartus II project
directory

<Qsys system>

A Block Symbol File (.bsf) representation of the top-level Qsys
system for use in Quartus II Block Diagram Files (.bdf).

<Qsys system>.bsf

A report for the system, which provides a system overview
including the following information:

• External connections for the system
• Amemorymap showing the address of each slave with respect

to each master to which it is connected
• Parameter assignments for each component

<Qsys system>.html

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Output Files6-24 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionFile Name or Directory Name

Describes the components and connections in your system. This
file is a complete system description and is used by downstream
tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently,
you can parse its contents to get requirements when developing
software drivers for Qsys components.

This file and the system.h file generated for the Nios II tool chain
include address map information for each slave relative to each
master that accesses the slave. Different masters may have a
different address map to access a particular slave component.

<Qsys system>.sopcinfo

Required input file for ip-make-simscript to generate
simulation script for supported simulators. The .spd file contains
a list of files generated for simulation, along with information
about initializable memories.

<Qsys system>.spd

This directory includes the Qsys-generated output files that the
Quartus II software uses to synthesize your design.

<Qsys system>/synthesis

An HDL file for the top-level Qsys system that instantiates each
submodule in the system for synthesis.

<Qsys system>/synthesis/

<Qsys system>.v

or

<Qsys system>/synthesis

<Qsys system>.vhd

If IP in the system contains register information, Qsys generates
a .regmap file. The .regmap file describes the register map
information onmaster and slave interfaces. This file complements
the .sopcinfo file by providingmore detailed register information
about the system. This enables register display views and user
customizable statistics providers in the SystemConsole.

<Qsys_system>/synthesis/

<Qsys system>.regmap

This file this file includes all the info you need to synthesize the
IP components in your system.

<Qsys system>/synthesis/

<Qsys system>.qip

Contains Verilog HDL or VHDL submodule files for synthesis.<Qsys system>/synthesis/submodules

This directory includes theQsys-generated output files to simulate
your Qsys design or testbench system.

<Qsys system>/simulation

This file contains information reqiured forNativeLink simulation
of IP components in your system. You must add the .sip file to
your Quartus II project.

<Qsys system>/simulation/

<Qsys system>.sip

Altera CorporationCreating a System With Qsys

Send Feedback

6-25Generating Output Files
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionFile Name or Directory Name

An HDL file for the top-level Qsys system that instantiates each
submodule in the system for simulation.

<Qsys system>/simulation/

<Qsys system>.v

or

<Qsys system>/simulation/

<Qsys system>.vhd

Contains Verilog HDL or VHDL submodule files for simulation.<Qsys system>/simulation/submodules

Contains a ModelSim® script msim_setup.tcl to set up and run
a simulation.

<Qsys system>/simulation/mentor

Contains Riviera-PRO script rivierapro_setup.tcl to setup and
run a simulation.

<Qsys system>/simulation/aldec

Contains a shell script vcs_setup.sh to set up and run a VCS®
simulation.

<Qsys system>/simulation/synopsys/vcs

Contains a shell script vcsmx_setup.sh and synopsys_sim.setup
to set up and run a VCS MX simulation.

<Qsys system>/simulation

/synopsys/vcsmx

Contains a shell script ncsim_setup.sh and other setup files to
set up and run an NCSIM simulation.

<Qsys system>/simulation/cadence

Contains a Qsys testbench system.<Qsys system>/testbench

A Qsys testbench system.<Qsys system> /testbench/

<Qsys system>_tb.qsys

The top-level testbench file, which connects BFMs to the top-level
interfaces of <qsys_design> .qsys.

<Qsys system>/testbench/

<Qsys sysyem>_tb.v

or

<Qsys system>/testbench/

<Qsys sysyem>_tb.vhd

Allows HPS System Debug tools to view the register maps of
peripherals connected to the HPS within a Qsys design.

Similarly, during synthesis the .svd files for slave interfaces visible
to System Console masters are stored in the .sof file in the debug
section. System Console reads this section, which Qsys can query
for register map information. When a slave is open, Qsys can
access the registers by name.

<Qsys system>/testbench/<module name>
_<master interface name>.svd

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Output Files6-26 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

CMSIS Support for Qsys Systems With An HPS Component
Qsys systems that contain a Hard Processor System (HPS) component generate a System View Description
(.svd) file that lists peripherals connected to the ARM processor.

The System View Description File (.svd) (or CMSIS-SVD) file format is an XML schema specified as part
of the Cortex Microcontroller Software Interface Standard (CMSIS) provided by ARM. The CMSIS-SVD
file allows HPS System Debug tools (such as the DS-5 Debugger) to gain visibility into the register maps of
peripherals connected to the HPS within a Qsys system.

Related Information

• Component Interface Tcl Reference

• CMSIS - Cortex Microcontroller Software

Viewing the HDL Example
The HDL Example dialog box, accessed from the Generate menu, provides the top-level HDL definition of
your system in either Verilog HDL or VHDL, and also displays VHDL component declarations.

You can copy and paste the example into a top-level HDL file that instantiates the Qsys system, if the system
is not the top-level module in your Quartus II project.

Simulating a Qsys System
The Qsys Generation dialog box provides options for generating Qsys simulation.

The following options are available in the Generate dialog box.

• Generate the Verilog HDL, VHDL, or mixed-language simulation model for your system to use in your
own simulation environment.

• Generate a standard or simple testbench system with BFM or Mentor Verification IP (for AXI3/AXI4)
components that drive the external interfaces of your system, and generate a Verilog HDL or VHDL
simulation model for the testbench system to use in your simulation tool.

• First generate a testbench system, and then modify the testbench system in Qsys before generating its
simulation model.

In most cases, you should select only one of the simulation model options, that is generate a simulation
model for the original system, or for the testbench system.Table 6-6 summarizes the options in theGenerate
dialog box that correspond to the simulation files described above.

Altera CorporationCreating a System With Qsys

Send Feedback

6-27CMSIS Support for Qsys Systems With An HPS Component
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-6: Summary of Settings Simulation and Synthesis in the Generate Dialog Box

DescriptionValueSimulation Setting

Generates simulation model files
and simulation scripts. Use this
option to include the simulation
model in your own custom
testbench or simulation environ-
ment. You can also use this option
to generatemodels for a testbench
system that you have modified.

None

Verilog

VHDL

Create simulation model

Generates a mixed language
simulation model generation. If
you have a mixed-language
simulator license, generating for
mixed-language simulation can
shorten the generation time, and
produce files that may simulate
faster. When turned off, all
simulation files are generated in
the selected simulation model
language.

On

Off

Allow mixed-language
simulation

Creates a testbench Qsys system
with BFM components attached
to exported Avalon and AXI3
interfaces. Includes any simulation
partner modules specified by IP
cores in the system.

The testbench generator supports
AXI interfaces and can connect
AXI3/AXI4 interfaces to Mentor
GraphicsAXI3/AXI4master/slave
BFM. However, BFMs support
address widths only up to 32-bits.

Standard, BFMs for standard Qsys
Interconnect

Create testbench Qsys system

Creates a testbench Qsys system
with BFM components driving
only clock and reset interfaces.
Includes any simulation partner
modules specified by IP cores in
the system.

Simple, BFMs for clocks and resets

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Simulating a Qsys System6-28 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DescriptionValueSimulation Setting

Creates simulationmodel files and
simulation scripts for the
testbench Qsys system specified
in the setting above. Use this
option if you do not need to
modify the Qsys-generated
testbench before running the
simulation.

None

Verilog

VHDL

Create testbench simulation
model

Creates Verilog HDL or VHDL
design files.

On

Off

Create HDL design files for
synthesis

Creates the top-level module in
the system in the selected
language.

Verilog

VHDL

Top-level module language for
synthesis

You can optionally create a (.bsf)
file to use in schematic Block
Diagram File (.bdf) designs.

On

Off

Create block symbol files (.bsf)

Allows you to browse and locate
an alternate directory than the
project directory for each
generation target.

< directory name >Output Directory

Related Information

• Avalon Verification IP Suite User Guide

• Mentor Verification IP (VIP) Altera Edition (AE)

• Generating a System for Synthesis or Simulation

• Generation Dialog Box (Qsys)

Generate and Modify the Testbench System
You can use the following steps to create a testbench system of your design.

1. Create a Qsys system.
2. Generate a testbench system in the Qsys Generate dialog box.
3. Open the testbench system in Qsys. Make changes, as needed, to the BFMs, such as changing the BFM

instance names and BFM VHDL ID value. You can modify the VHDL ID value in the Altera Avalon
Interrupt Source component.

4. If you modified a BFM, generate the simulation model for the testbench system on the Qsys Generation
tab. You can generate your simulation model in either Verilog HDL or VHDL.

5. Create a custom test program for the BFMs.
6. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Altera CorporationCreating a System With Qsys

Send Feedback

6-29Generate and Modify the Testbench System
QII51020
2013.11.4

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_generate_system.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_tab_gen.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL
only)

You can use the following design flow to create a testbench system and a simulation model of your Verilog
HDL design.

1. Create a Qsys system.
2. Generate a testbench system and the simulation model for the testbench system in the Qsys Generate

dialog box.
3. Create a custom test program for the BFMs.
4. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Adding Assertion Monitors
You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to verify protocol
correctness and test coverage with a simulator that supports SystemVerilog assertions.

Modelsim Altera Edition does not support SystemVerilog assertions. If you want to use assertion
monitors, you will need to use an advanced simulator such as Mentor Questasim, Synopsys VCS, or
Cadence Incisive.

Note:

Figure 6-9 demonstrates the use ofmonitors with anAvalon-MMmonitor between the previously connected
pcie_compiler bar1_0_Prefetchable Avalon-MM master interface and the
dma_0 control_port_slave Avalon-MM slave interface.

Figure 6-9: Inserting an Avalon-MM Monitor between Avalon-MM Master and Slave Interfaces

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink interfaces.

Simulation Scripts
Qsys generates simulation scripts to script the simulation environment set up forMentorGraphicsModelsim®
and Questasim®, Synopsys VCS® and VCS MX®, Cadence Incisive Enterprise Simulator® (NCSIM), and
the Aldec Riviera-PRO® Simulator.

You can use the scripts to compile the required device libraries and system design files in the correct order
and elaborate or load the top-level design for simulation.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only)6-30 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The simulation scripts provide the following variables that allow flexibility in your simulation environment:

• TOP_LEVEL_NAME—If the Qsys testbench system is not the top-level instance in your simulation
environment because you instantiate the Qsys testbench within your own top-level simulation file, set
the TOP_LEVEL_NAME variable to the top-level hierarchy name.

• QSYS_SIMDIR—If the simulation files generated by Qsys are not in the simulation working directory,
use the QSYS_SIMDIR variable to specify the directory location of the Qsys simulation files.

• QUARTUS_INSTALL_DIR—Points to the device family library.

Example 6-2 shows a simple top-level simulation HDL file for a testbench system
pattern_generator_tb, which was generated for a Qsys system called pattern_generator. The
top.sv file defines the top-level module that instantiates thepattern_generator_tb simulation model
as well as a custom SystemVerilog test program with BFM transactions, called test_program.

Example 6-2: Top-Level Simulation HDL File Example

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

The VHDL version of the Altera Tristate Conduit BFM is not supported in Synopsys VCS, NCSim,
andRiviera-PRO in theQuartus II software version 13.1. These simulators do not support theVHDL

Note:

protected type, which is used to implement the BFM. For aworkaround, use a simulator that supports
the VHDL protected type.

Related Information

• ModelSim-Altera software, Mentor Graphics ModelSim support

• Synopsys VCS and VCS MX support

• Cadence Incisive Enterprise Simulator (IES) support

• Aldec Active-HDL and Rivera-PRO support

Simulating Software Running on a Nios II Processor
To simulate the software in a system driven by a Nios II embedded processor, generate the simulation model
for a simple Qsys testbench system by completing the following steps:

1. On the Generation tab, set Create testbench Qsys system to Simple, BFMs for clocks and resets.
2. Set Create testbench simulation model to Verilog or VHDL.
3. Click Generate.
4. Open the Nios II Software Build Tools for Eclipse.
5. Set up an application project and board support package (BSP) for the <qsys_system> .sopcinfo file.
6. Set up an application project and board support package (BSP) for the <qsys_system> .sopcinfo file.
7. To simulate, right-click the application project in Eclipse, point to Run as,and then click 4 Nios II

ModelSim. The Run As Nios II ModelSim command sets up the ModelSim simulation environment,
compiles and loads the Nios II software simulation.

Altera CorporationCreating a System With Qsys

Send Feedback

6-31Simulating Software Running on a Nios II Processor
QII51020
2013.11.4

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53023.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. To run the simulation in ModelSim, type run -all in the ModelSim transcript window.
9. If prompted, set ModelSim configuration settings and select the correct Qsys Testbench Simulation

Package Descriptor (.spd) file, < qsys_system > _tb.spd. The .spd file is generated with the testbench
simulation model for Nios II designs and specifies all the files required for the Nios II software simulation.

Related Information

• Getting Started with the Graphical User Interface (Nios II)

• Getting Started from the Command-Line (Nios II)

System Examples
The following system examples demonstrate various design features and flows that you can replicate in your
design.

PCI Express Subsystem Example on page 6-32

Ethernet Subsystem Example on page 6-34

PCI Express to Ethernet Bridge Example on page 6-36

Hierarchical System Using Instance Parameters Example on page 6-38

PCI Express Subsystem Example
Figure 6-10 and Figure 6-11 show an example PCI Express subsystem. The application running on the root
complex processor programs theDMAcontroller. TheDMAcontroller’sAvalon-MMread andwritemaster
interfaces initiate transfers to and from the DDR3 memory and to the PCI Express Avalon-MM TX data
port. The system exports the DMA master interfaces through an Avalon-MM pipeline bridge. In the figure
below, all three masters connect to a single slave interface. During system generation, Qsys automatically
inserts arbitration logic to control access to this slave interface.

By default, the arbiter provides equal access to all requestingmasters; however, you canweight the arbitration
by changing the number of arbitration shares for the requesting masters. The second pipeline bridge allows
an external master, such as a host processor, to also issue transactions to the CSR interfaces.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
System Examples6-32 2013.11.4

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-10: PCI Express Subsystem

PCI Express Subsystem

PCIe Link

DMAAvalon-MM Master
(exported to DDR3 Controller)

Cntl and Status Avalon-MM Slave
(exported to Embedded Controller)

(exported
to PCIe root port)

DMA
Controller

CSR

Rd

Wr

Avalon-MM PIpeline
Bridge (Qsys)

Avalon-MM PIpeline
Bridge (Qsys)

PCI Express
IP Core

CSR

CSR

Tx Data

M

M

M

M

M

S

S

S

S

S

Cn

Altera CorporationCreating a System With Qsys

Send Feedback

6-33PCI Express Subsystem Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-11: Qsys Representation of the PCI Express Subsystem

Related Information
Qsys Interconnect

Ethernet Subsystem Example
In this example subsystem, the transmit (TX) DMA receives data from the DDR3 memory and writes it to
theAltera Triple-Speed Ethernet IP core using anAvalon-ST source interface. The receive (RX)DMAaccepts
data from the Triple-Speed Ethernet IP core on its Avalon-ST sink interface and writes it to DDR3 memory.

The read and write masters of both Scatter-Gather DMA controllers and the Triple-Speed Ethernet IP core
connect to the DDR3 memory through an Avalon-MM pipeline bridge. This Ethernet example subsystem
exports all three control and status interfaces through an Avalon-MM pipeline bridge, which connects to a
controller outside of the Qsys system, as shown in Figure 6-12 and Figure 6-13.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Ethernet Subsystem Example6-34 2013.11.4

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-12: Scatter-Gather DMA-to-Ethernet Subsystem

TX Avalon-ST

RX Avalon-ST

Scatter Gather
DMA

M

Src

M M

Scatter Gather
DMA

MM M

S

S

S

Src

Snk

Triple Speed
Ethernet

Snk

M

S

Avalon-MM Pipeline
Bridge (Qsys)

CSR

M S
DDR3

CSR
CSR

CSR

Ethernet
Cn

Calibration
Cn

Ethernet Subsystem

Avalon-MM
Pipeline
Bridge
(Qsys)

Qsys inserts
arbitration
logic

Altera CorporationCreating a System With Qsys

Send Feedback

6-35Ethernet Subsystem Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-13: Qsys Representation of the Ethernet Subsystem

PCI Express to Ethernet Bridge Example
The PCI Express and Ethernet example subsystems run at 125 MHz and includes two clock domains and
an ethernet subsystem. The DDR3 SDRAM controller runs at 200 MHz. Qsys automatically inserts clock
crossing logic to synchronize the DDR3 SDRAM Controller with the PCI Express and Ethernet subsystems,
as shown in Figure 6-14 and Figure 6-15.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
PCI Express to Ethernet Bridge Example6-36 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-14: PCI Express-to-Ethernet Bridge Example System

Qsys inserts
arbitration and
Clock crossing

logic
(125 MHz-200MHz)

Qsys System

400 MHz

Ethernet
Subsystem

SCSRM DDR3

CnEthernet

CnCalibration

CSRM

PCIe link Cn

PCI Express
Subsystem

S

SM

Avalon-MM
PIpeline

Bridge (Qsys)

MC

DDR3
SDRAM
Controller

125 MHz

125 MHz

125 MHz

200 MHz

DDR3
SDRAM

to CPU

Figure 6-15: Qsys Representation of the Complete PCI Express to Ethernet Bridge

Altera CorporationCreating a System With Qsys

Send Feedback

6-37PCI Express to Ethernet Bridge Example
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pipeline Bridges
The PCI Express to Ethernet bridge example systemuses several pipeline bridges. Youmust configure bridges
to accommodate the address range of all of connected components, including the components in the
originating subsystem and the components in the next higher level of the system hierarchy.

The pipeline bridge inserts a pipeline stage between the connected components. You should register signals
at the subsystem interface level for the following reasons:

• Registering interface signals decreases the amount of combinational logic that must be completed in one
cycle, making it easier to meet timing constraints.

• Registering interface signals raises the potential frequency, or fMAX, of your design at the expense of an
additional cycle of latency, which might adversely affect system throughput.

• TheQuartus II incremental compilation feature can achieve better fMAX results if the subsystem boundary
is registered.

Connections between AXI and Avalon interfaces are made without requiring the use of explicitly
instantiated bridges; the interconnect provides the necessary bridging logic.

Note:

Related Information

• Optimizing System Performance for Qsys

• Qsys System Design Components

Hierarchical System Using Instance Parameters Example
You can use an instance parameter to control the implementation of system components from a higher-level
Qsys system. You define instance parameters on the Instance Parameters tab in Qsys.

In Example 6-3, the my_system.qsys system has two instances of the same IP component, My_IP. My_IP
is aQsyscomponent with a system identification parameter calledMY_SYSTEM_ID.Whenmy_system.qsys
is instantiated within another higher-level Qsys system, the two My_IP subcomponents require different
values for their MY_SYSTEM_ID parameters based on a value determined by the higher-level system. In
this example, the value specified by the top-level system is designated top_id and in my_system.qsys, the
component instance comp0 requires MY_SYSTEM_ID set to top_id + 1, and instance comp1 requires
MY_SYSTEM_ID set to top_id + 2. Example 6-3 defines the MY_SYSTEM_ID system ID parameter
in the IP component My_IP:

Example 6-3: System ID Parameter Example

add_parameter MY_SYSTEM_ID int 8

set_parameter_property MY_SYSTEM_ID DISPLAY_NAME \
MY_SYSTEM_ID_PARAM

set_parameter_property MY_SYSTEM_ID UNITS None

To satisfy the design requirements for this example, you define an instance parameter in my_system.qsys
that is set by the higher-level system, and then define an instance script to specify how the values of the
parameters of the My_IP components instantiated in my_system.qsys are affected by the value set on the
instance parameter.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Pipeline Bridges6-38 2013.11.4

http://www.altera.com/literature/hb/qts/qts_optimize.pdf
http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To do this, in Qsys, open the my_system.qsys Qsys system that instantiates the two instances of the My_IP
components. On the Instance Parameters tab, create a parameter called system_id. For this example,
you can set this parameter to be of type Integer and choose 0 as the default value.

Next, you provide a Tcl Instance Script that defines how the value of the system_id parameter should
affect the parameters of comp0 and comp1 subcomponents in my_system.qsys.

In Example 6-4 Qsys gets the value of the parameter system_id from the top-level system and saves it as
top_id, and then increments the value by 1 and 2. The script then uses the new calculated values to set the
MY_SYSTEM_ID parameter in the My_IP component for the instances comp0 and comp1. The script
uses informational messages to print the status of the parameter settings when the my_system.qsys system
is added to the higher-level system.

Example 6-4: Tcl Instance Script Example

package require qsys 13.1
set_module_property Composition_callback My_callback
proc My_callback { } {
 # Get The Value Of system_id parameter from the
 # higher-level system
 set top_id [get_parameter_value system_id]

 # Print Info Message
 send_message Info "system_id Value Specified: $top_id"

 # Use Above Value To Set Parameter Values For The Subcomponents

 set child_id_0 [expr {$top_id + 1}]
 set child_id_1 [expr {$top_id + 2}]

 # Set The Parameter Values On The Subcomponent Instances
 set_instance_parameter_value comp0 My_system_id $child_id_0
 set_instance_parameter_value comp1 My_system_id $child_id_1

 # Print Info Messages
 send_message Info "system_id Value Used In comp0: $child_id_0"
 send_message Info "system_id Value Used In comp1: $child_id_1"
}

You can click Preview Instance to modify the parameter value interactively and see the effect of the scripts
in themessage panel which can be useful for debugging the script. In this example, if you change the parameter
value in the Preview screen, the component generates messages to report the top-level ID parameter value
and the parameter values used for the two instances of the component.

Related Information
Working with Instance Parameters in Qsys

Searching for Component Files to Add to the Library
The Qsys Library lists design components available for use in Qsys systems. Components can include
Altera-provided IP cores, third-party IP cores, and custom IP cores that you provide. Previously created

Altera CorporationCreating a System With Qsys

Send Feedback

6-39Searching for Component Files to Add to the Library
QII51020
2013.11.4

http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys systems can also appear in the library, and you can use these systems in other designs if they have
exported interfaces.

Altera and third-party developers provide ready-to-use components, which are installed automatically with
the Quartus II software and are available in the Qsys Library. The Qsys Library includes the following
components:

• Microprocessors, such as the Nios® II processor
• DSP IP cores, such as the Reed Solomon II core
• Interface protocols, such as the IP Compiler for PCI Express
• Memory controllers, such as the RLDRAM II Controller with UniPHY
• Avalon® Streaming (Avalon-ST) components, such as the Avalon-ST Multiplexer IP core
• Qsys Interconnect components
• Verification IP (VIP) Bus Functional Models (BFMs)

You can set the IPSearchPath option to specify the installed locations for customand third-party components
that you want to appear in the component library. Qsys searches for component files each time you open
the tool, and locates and displays the list of available components in the component library.

Qsys searches the directories listed in the IP Search Path for the following component file types:

• Hardware Component Description File (_hw.tcl)—Each _hw.tcl file defines a single component.
• IP Index File (.ipx)—Each .ipx file indexes a collection of available components, or a reference to other

directories to search. In general, .ipx files facilitate faster startup for Qsys and other tools because fewer
directories are searched and analyzed.

Qsys searches some directories recursively and other directories only to a specific depth. When a directory
is recursively searched, the search stops at any directory containing an _hw.tcl or .ipx file; subdirectories
are not searched. In the following list of search locations, a recursive descent is annotated by **. A single *
signifies any file.

If you add a component to you search path, you must refresh your system by clicking File > Refresh
to update the Qsys library.

Note:

• PROJECT_DIR/*—Finds components and index files in the Quartus II project directory.
• PROJECT_DIR/ip/**/*—Finds components and index files in any subdirectory of the /ip subdirectory

of the Quartus project directory.
• QUARTUS_INSTALLDIR/../ip/**/*—In this IP directory, you can create your own subdirectories

that are available for any project using this Quartus II installation directory.

Adding Components to the Library
You can use one of the following methods to add components to the library.

• Save components in your project directory.
• Save components in the /ip subdirectory of your project directory.
• Copy components to the install directory.
• Reference components in an IP Index File (.ipx).
• Integrate third-party components.

Copy Components to a Directory Searched by Default on page 6-41

Reference Components in an IP Index File (.ipx) on page 6-42

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Adding Components to the Library6-40 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Extending the Default Search Path on page 6-44

Copy Components to a Directory Searched by Default

The simplest method to add a new component to the Qsys Library is to copy your components into one of
the directories Qsys searches by default. You can save component files in your project directory, or in the
/ip subdirectory of your project directory. These approaches are useful if you want to associate your
components with a specific Quartus II project.

If you save the component in the project directory, the component appears in the Library in the group you
specified under Project. Alternatively, if you save the component in the Quartus II installation directory,
the component appears in the specified group under Library.

You can also save the component files into the default Quartus II<install_dir> /ip/ directory. This approach
is useful in the following situations and is shown in Figure 6-16.

• You want to associate your components with a specific release of the Quartus II software.
• You want to have the same components available across multiple projects.

Figure 6-16: User Library Included In Subdirectory <install_dir>/ip/

.altera_components.ipx
<components>

.

user_components

component1

component2

<install_dir>

quartus

ip

altera

component1_hw.tcl
component1.v

component2_hw.tcl
component2.v

2

1

3

In Figure 6-16, the circled numbers identify a typical directory structure for the Quartus II software. For
the directory structure above, Qsys performs the component discovery algorithm described below to locate
.ipx and_hw.tcl files.

1. Qsys recursively searches the <install_dir> /ip/ directory by default. The recursive search stops when
Qsys finds an .ipx file.

2. As part of the recursive search, Qsys also looks in the user_components directory. Qsys finds the
component1 directory, which contains component1_hw.tcl. When Qsys finds the component1_hw.tcl
component, the recursive search ends, and no components in subdirectories of component1 are found.

3. Qsys then searches the component2 directory, because this directory path also appears as an IP Search
Path, and discovers component2_hw.tcl. When Qsys finds component2_hw.tcl, the recursive search
ends.

Altera CorporationCreating a System With Qsys

Send Feedback

6-41Copy Components to a Directory Searched by Default
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you save your _hw.tcl file in the <install_dir> /ip/ directory, Qsys finds your _hw.tcl file and does
not search subdirectories adjacent to the _hw.tcl file.

Note:

Reference Components in an IP Index File (.ipx)

You can specify the search path in a user_components.ipx file under the <install_dir> /ip directory. This
method allows you to add a location that is independent of the default search path. You can also save the
.ipx file in any of the default search locations, for example, theQuartus II project directory, or the /ip directory
in the project directory. The user_components.ipx file includes a single line of code redirecting Qsys to the
location of each user library. The path below shows a redirection example:

<library> <path path="<user_lib_dir>/user_ip/**/*"/> </library>

You can verify that components are available with theip-catalog command. You can use theip-make-
ipx command to create an .ipx file for a directory tree, which can reduce the startup time for Qsys.

Understanding the IP Index File (.ipx) Syntax
An IP Index File (.ipx) is an XML file that describes the search path used to discover components that are
available for a Qsys system. A <path> entry specifies a directory in which components may be found. A
<component> entry specifies the path to a single component.

Example 6-5: .ipx File Structure

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <path> element contains a path attribute, which specifies the path to a directory, or the path to another
.ipx file, and can use wildcards in its definition. An asterisk matches any file name. If you use an asterisk as
a directory name, it matches any number of subdirectories.

When searching the specified path, the following three types of files are identified:

• .ipx—Additional index files.
• _hw.tcl—Qsys component definitions.
• _sw.tcl—Nios II board support package (BSP) software component definitions.

A <component> element contains several attributes to define a component. If you provide the required
details for each component in an .ipx file, the startup time for Qsys is less than if Qsys must discover the
files in a directory. Example 6-6 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Example 6-6: Component Element in an .ipx File

<library>
 <component

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Reference Components in an IP Index File (.ipx)6-42 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 name="A Qsys Component"
 displayName="Qsys FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"

 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

ip-catalog
The ip-catalog command displays the catalog of available components relative to the current project
directory in either plain text or XML format.

Usage

ip-catalog [--project-dir=<directory>][--name=<value>][--verbose]
[--xml][--help]

Options

• --project-dir= <directory>—Optional. Components are found in locations relative to the
project, if any. By default, the current directory, ‘.’ is used. To exclude a project directory, leave the value
empty.

• --name= <value>—Optional. This argument provides a pattern to filter the names of the components
found. To show all components, use a * or ‘ ‘. By default, all components are shown. The argument is not
case sensitive.

• --verbose—Optional. If set, reports the progress of the command.
• --xml—Optional. If set, generates the output in XML format, instead of a line and colon-delimited

format.
• --help—Shows help for the ip-catalog command.

ip-make-ipx
The ip-make-ipx command creates an .ipx file and is a convenient way to include a collection of
components from an arbitrary directory in the Qsys search path. You can also edit the .ipx file to disable
visibility of one or more components in the Qsys Library.

Usage

ip-make-ipx [--source-directory=<directory>] [--output=<file>]
[--relative-vars=<value>] [--thorough-descent] [--message-before=<value>]
[--message-after=<value>] [--help]

Options

Altera CorporationCreating a System With Qsys

Send Feedback

6-43ip-catalog
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• --source-directory= <directory>—Optional. Specifies the root director(ies) that Qsys uses
to find the component files. The default directory is “.”. You can also provide a comma-separated list of
directories.

• --output= <file>—Optional. Specifies the name of the file to generate. The default name is
/components.ipx.

• --relative-vars= <value>—Optional. Causes the output file to include references relative to
the specified variable(s) where possible. You can specify multiple variables as a comma-separated list.

• --thorough-descent—Optional. If set, a component or .ipx file in a directory does not prevent
subdirectories from being searched.

• --message-before= <value>—Optional. A message to print to stdout when indexing begins.
• --message-after= <value>—Optional. Amessage to send tostdoutwhen indexing completes.
• --help—Shows help for this command.

Extending the Default Search Path

he following steps allow you to extend the default search path by specifying additional directories.

1. In Qsys, in the Tools menu, click Options.
2. In the Category list, click IP Search Path.
3. Click Add.
4. Browse to locate additional directories and click Open to add them to your search path.

You do not need to include the components specified in the IP Search Path as part of yourQuartus II project.

Integrating Third-Party Components
You can use Qsys components created by third-party IP developers. Altera awards the Qsys Compliant label
to IP cores that are fully supported in Qsys. These cores have interfaces that are supported by Qsys, such as
Avalon-MMorAXI, andmay include timing and placement constraints, software drivers, simulationmodels,
and reference designs.

To find supported third-party Qsys components on Altera's web page, navigate to the Intellectual Property
&ReferenceDesigns page, and then typeQsys Certified in the Search box, select IPCore&Reference
Designs, and then press Enter.

Refer to Altera's Intellectual Property & Reference Designs page for more information.

Related Information
Intellectual Property & Reference Designs

Using Qsys Command-Line with Utilities and Scripts
You can perform many of the functions available in the Qsys GUI from the command-line with the
qsys-generate and qsys-script utilities.

You run these command-line executables from the following Quartus II installation directory:

<Quartus II installation directory>\quartus\sopc_builder\bin

You can use qsys-generate to generate Qsys output files outside of the Qsys GUI. You can use qsys-
script to create, manipulate or manage a Qsys system with command-line scripting.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Extending the Default Search Path6-44 2013.11.4

http://www.altera.com/products/ip/ipm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For command-line help listing all options for these executables, type the following command:

<Quartus II installation directory>\quartus\sopc_builder\bin\<executable name> --help

Example 6-7: Qsys Command-Line Scripting Example

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys my_script.tcl contains:
package require -exact qsys 13.1
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

Related Information

• Working with Instance Parameters in Qsys

• Altera Wiki Qsys Scripts

Running the Qsys Editor from the Command-Line
You can use the qsys-edit utility to run the Qsys Editor from the command-line.

The following is a list of options that you can use with the qsys-edit utility:

• <1st arg file>—Optional. The name of the .qsys system or .qvar variation file to edit.
• --search-path[=<value>]—Optional. If omitted, Qsys uses a standard default path. If provided,

Qsys searches a comma-separated list of paths. To include the standard path in your replacement, use
"$", for example: /extra/dir.$.

• --project-directory=<directory>—Optional. Allows you to find components in certain
locations relative to the project, if any. By default, the current directory is:'.' . To exclude any project
directory, use ''.

• --new-component-type=<value>—Optional. Allows you to specify the kind of instance that is
parameterized in a variation.

• --debug—Optional. Enables debugging features and output.
• --host-controller—Optional. Launches the application with an XML host controller interface

on standard input/output.
• --jvm-max-heap-size=<value>—Optional. Themaximummemory sizeQsys uses for allocations

when running qsys-edit. You specify this value as <size><unit>, where unit is m (or M) for
multiples of megabytes, or g (or G) for multiples of gigabytes. The default value is 512m.

• --help—Optional. Display help for qsys-edit.

Launching Qsys with Additional Computer Memory
If the Qsys sytem you are creating requires more than the 512 megabytes of default memory, you may need
to launch the Qsys GUI from the command-line with additional memory. For example, the following
qsys-edit command allows you to launch Qsys from the command-line with 2 gigabytes of memory.

qsys-edit --jvm-max-heap-size=2g

Altera CorporationCreating a System With Qsys

Send Feedback

6-45Running the Qsys Editor from the Command-Line
QII51020
2013.11.4

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
http://www.alterawiki.com/wiki/Qsys_Scripts
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating Qsys Systems with the qsys-generate Utility
You can use the qsys-generate utility to generate RTL for your Qsys system, simulation models and
scripts, and to create testbench systems for testing your Qsys system in a simulator using BFMs. Output
from the qsys-generate command is the same as when generating using the Qsys GUI.

The following is a list of options that you can use with the qsys-generate utility:

• <1st arg file>—Required. The name of the .qsys system file to generate.
• --synthesis=<VERILOG|VHDL>—Optional. Creates synthesisHDL files thatQsys uses to compile

the system in a Quartus II project. You must specify the preferred generation language for the top-level
RTL file for the generated Qsys system.

• --block-symbol-file—Optional. Creates a block symbol file (.bsf) for the system.
• --simulation=<VERILOG|VHDL>—Optional. Creates a simulation model for the system. The

simulation model contains generated HDL files for the simulator, and may include simulation-only
features. You must specify the preferred simulation language.

• --testbench=<SIMPLE|STANDARD>—Optional. Creates a testbench system. The testbench system
instantiates the original system, adding bus functional models to drive the top-level interfaces. Once
generated, the bus functional models interact with the system in the simulator.

• --testbench-simulation=<VERILOG|VHDL>—Optional. After creating the testbench system,
also create a simulation model for the testbench system.

• --output-directory=<value>—Optional. Sets the output directory. Each generation target is
created in a subdirectory of the output directory. If you do not specify the output directory, a subdirectory
of the current working directory matching the name of the system is used.

• --search-path=<value>—Optional. If omitted, a standard default path is used. If provided, a
comma-separated list of paths is searched. To include the standard path in your replacement, use "$",
for example, "/extra/dir,$".

• --jvm-max-heap-size=<value>—Optional. The maximum memory size that Qsys uses for
allocations when running this tool. The value is specified as <size><unit> where unit can be m (or M)
for multiples of megabytes or g (or G) for multiples of gigabytes. The default value is 512m.

• --family=<value>—Optional. Sets the device family.
• --part=<value>—Optional. Sets the device part number. If set, this option overrides the--family

option.
• --allow-mixed-language-simulation—Optional. Enables amixed language simulationmodel

generation. If true, if a preferred simulation language is set, Qsys uses a fileset of the component for the
simulation model generation. When false, which is the default, Qsys uses the language specified with
--file-set=<value> for all components for simulation model generation.

• --file-set=<value>—Optional. Allows you to choose the type output to generate, for example,
QUARTUS_SYNTH, SIM_VERLOG, or VHDL.

Creating and Managing a System with qsys-script
You can use the qsys-script tool to create and manipulate a Qsys system with Tcl scripting commands.

You must provide a package version for the qsys-script. If you do not specify the --package-
version=<value> qsys-script command, you must then provide a Tcl script and request the

Note:

system scripting API directly with the package require -exact qsys < version >
command.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Generating Qsys Systems with the qsys-generate Utility6-46 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following is a list of options that you can use with the qsys-script utility:

• --system-file=<file>—Optional. Specifies the path to a .qsys system file. This system is loaded
before running scripting commands.

• --script=<file>—Optional. A file containing Tcl scripting commands for creating ormanipulating
Qsys systems. If you specify both --cmd and --script, the --cmd commands are run before the
script specified by --script.

• --cmd=<value>—Optional. A string that contains Tcl scripting commands to create or manipulate
a Qsys system. If you specify both --cmd and --script, the --cmd commands are run before the
script specified by --script.

• --package-version=<value>—Optional. Specifies which system scripting Tcl API version to
use and determines the functionality and behavior of the Tcl commands. TheQuartus II software supports
the Tcl API scripting commands. If you do not specify the version on the command-line, your Tcl script
must request the system scripting API directly with the package require -exact qsys <
version > command.

• --help—Optional. Displays help for the qsys-script tool.
• --search-path=<value>—Optional. If omitted, a standard default path is used. If provided, a

comma-separated list of paths is searched. To include the standard path in your replacement, use "$",
for example, /< directory path >/dir,$. Multiple directory references are separated with a
comma.

• --jvm-max-heap-size=<value>—Optional. The maximum memory size that is used by the
qsys-script tool. You specify this value as <size><unit> where unit can be m or M for multiples
of megabytes or g or G for multiples of gigabytes.

Qsys Scripting Command Reference
Interface properties work differently for qsys scripting than with _hw.tcl scripting. In _hw.tcl, interfaces do
not distinguish between properties and parameters; in qsys scripting, properties and parameters are unique.

add_connection <start> [<end>] on page 6-52
This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, mux0.out is
the interface out on the instance named mux0.

add_instance <name> <type> [<version>] on page 6-52
This command adds an instance of a component, referred to as a child or child instance, to the system.

add_interface <name> <type> <direction> on page 6-53
This command adds an interface to your system, which you can use to export an interface from within the
system.You specify the exported interfacewith the commandset_interface_property EXPORT_OF
<instance.interface>.

auto_assign_base_addresses <instance> on page 6-53
This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_irqs <instance> on page 6-53
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

Altera CorporationCreating a System With Qsys

Send Feedback

6-47Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_connect <element> on page 6-54
This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

create_system [<name>] on page 6-54
This command replaces the current system in the system script with a new system with the specified name.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-54
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameters <instance> <childConnection> on page 6-55
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connections <instance> on page 6-55
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_instance_assignment <instance> <childInstance> <key> on page 6-55
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignments <instance> <childInstance> on page 6-56
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameter_value <instance> <childInstance> <parameter> on page 6-56
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameters <instance> <childInstance> on page 6-57
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instances <instance> on page 6-57
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_connection_parameter_property <connection> <parameter> <property> on page 6-57
This command returns the value of a parameter property in a connection.

get_connection_parameter_value <connection> <parameter> on page 6-58
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameters <connection> on page 6-58
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_properties on page 6-58
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_property <connection> <property> on page 6-59
This command returns the value of a connection property.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Qsys Scripting Command Reference6-48 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connections [<element>] on page 6-59
This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example cpu, all connections to any interface on the instance are returned. If an interface on
a child instance is specified, for examplecpu.instruction_master, only connections to that interface
are returned.

get_instance_assignment <instance> <key> on page 6-59
This command returns the value of an assignment on a child instance.

get_instance_assignments <instance> on page 6-60
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_interface_assignment <instance> <interface> <key> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments <instance> <interface> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_parameter_property <instance> <interface> <parameter> <property> on page
6-61
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-61
This command returns the value of a parameter of an interface in a child instance.

get_instance_interface_parameters <instance> <interface> on page 6-62
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_port_property <instance> <interface> <port> <property> on page 6-62
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_ports <instance> <interface> on page 6-62
This command returns a list of ports in an interface of a child instance.

get_instance_interface_properties on page 6-63
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_property <instance> <interface> <property> on page 6-63
This command returns the property value for an interface in a child instance.

get_instance_interfaces <instance> on page 6-63
This command returns a list of interfaces in a child instance.

get_instance_parameter_property <instance> <parameter> <property> on page 6-64
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_value <instance> <parameter> on page 6-64
This command returns the value of a property in a child instance.

get_instance_parameters <instance> on page 6-64
This command returns a list of parameters in a child instance.

get_instance_port_property <instance> <port> <property> on page 6-65
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_properties on page 6-65
This command returns a list of properties for a child instance.

Altera CorporationCreating a System With Qsys

Send Feedback

6-49Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property <instance> <property> on page 6-65
This command returns the value of a property for a child instance.

get_instances on page 6-66
This command returns a list of the instance names for all child instances in the system.

get_interface_port_property <interface ><port ><property> on page 6-66
This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_ports <interface> on page 6-66
This command returns the names of all of the ports that have been added to an interface.

get_interface_properties on page 6-67
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_property <interface> <property> on page 6-67
This command returns the value of a property from the specified interface.

get_interfaces on page 6-67
This command returns a list of top-level interfaces in the system.

get_module_properties on page 6-68
This command returns the properties that you can manage for the top-level module.

get_module_property <property> on page 6-68
This command returns the value of a top-level system property.

get_parameter_properties on page 6-68
This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_port_properties on page 6-68
This command returns a list of properties that you can query on ports.

get_project_properties on page 6-69
This command returns a list of properties that you can query for the Quartus II project.

get_project_property <property> on page 6-69
This command returns the value of a Quartus II project property.

load_system <file> on page 6-69
This command loads a Qsys system from a file, and uses the system as the current system for scripting
commands.

lock_avalon_base_address <instance.interface> on page 6-69
This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

preview_insert_avalon_streaming_adapters on page 6-70
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

remove_connection <connection> on page 6-70
This command removes a connection from the system.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
Qsys Scripting Command Reference6-50 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_instance <instance> on page 6-70
This command removes a child instance from the system.

remove_interface <interface> on page 6-70
This command removes an exported top-level interface from the system.

save_system [<file>] on page 6-71
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the load_system command.

send_message <level> <message> on page 6-71
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.

set_connection_parameter_value <connection> <parameter> <value> on page 6-72
This command sets the parameter value for a connection.

set_instance_parameter_value <instance> <parameter> <value> on page 6-72
This command set the parameter value for a child instance. Derived parameters and SYSTEM_INFO
parameters for the child instance can not be set with this command.

set_instance_property <instance> <property> <value> on page 6-73
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.

set_interface_property <interface> <property> <value> on page 6-73
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.

set_module_property <property> <value> on page 6-73
This command sets the system property value, such as the name of the system using the NAME property.

set_project_property <property> <value> on page 6-74
This command sets the project property value, such as the device family.

set_validation_property <property> <value> on page 6-74
This command sets a property that affects how andwhen validation is run during system scripting. To disable
system validation after each scripting command, set AUTOMATIC_VALIDATION to false.

unlock_avalon_base_address <instance.interface> on page 6-74
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

upgrade_sopc_system <filename> on page 6-75
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_system command.

validate_connection <connection> on page 6-75
This command validates the specified connection, and returns the during validation messages.

validate_instance <instance> on page 6-75
This command validates the specified child instance, and returns the validation messages.

Altera CorporationCreating a System With Qsys

Send Feedback

6-51Qsys Scripting Command Reference
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance_interface <instance> <interface> on page 6-76
This command validates an interface on a child instance, and returns the validation messages.

validate_system on page 6-76
This command validates the system, and returns the validation messages.

add_connection <start> [<end>]
This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, mux0.out is
the interface out on the instance named mux0.

add_connection

add_connection <start> [<end>]Usage

NoneReturns

The start interface to be
connected, in <instance_
name>.<interface_name>
format.

start

Arguments

The end interface to be connected
<instance_name>
.<interface_name>. format.

end

add_connection dma.read_master sdram.s1Example

add_instance <name> <type> [<version>]
This command adds an instance of a component, referred to as a child or child instance, to the system.

add_instance

add_instance<name> <type> [<version>]Usage

NoneReturns

Specifies a unique local name that
you can use to manipulate the
instance. This name is used in the
generated HDL to identify the
instance.

name

Arguments The type refers to a kind of
instance available in a library, for
example altera_avalon_uart.

type

The required version of the
specified instance type. If no
version is specified, the latest
version is used.

version (optional)

add_instance uart_0 altera_avalon_uartExample

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
add_connection <start> [<end>]6-52 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface <name> <type> <direction>
This command adds an interface to your system, which you can use to export an interface from within the
system.You specify the exported interfacewith the commandset_interface_property EXPORT_OF
<instance.interface>.

add_interface

add_interface <name> <type> <direction>Usage

NoneReturns

The name of the interface that will
be exported from the system.

name

Arguments The type of interface.type

The interface direction.direction

add_interface my_export conduit end

add_interface my_export conduit end

set_interface_property my_export EXPORT_OF uart_
0.external_connection

Example

auto_assign_base_addresses <instance>
This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_base_addresses

auto_assign_base_addresses <instance>Usage

NoneReturns

The name of the instance with
memory mapped interfaces.

instanceArguments

auto_assign_base_addresses sdramExample

auto_assign_irqs <instance>
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

auto_assign_irqs

auto_assign_irqs <instance>Usage

NoneReturns

The name of the instance with an
interrupt sender.

instanceArguments

auto_assign_irqs sdramExample

Altera CorporationCreating a System With Qsys

Send Feedback

6-53add_interface <name> <type> <direction>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_connect <element>
This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

auto_connect

auto_connect <element>Usage

NoneReturns

The name of the instance
interface, or the name of an
instance.

elementArguments

auto_connect sdram

auto_connect uart_0.s1

Example

create_system [<name>]
This command replaces the current system in the system script with a new system with the specified name.

create_system

create_system [<name>]Usage

NoneReturns

The name of the new system.name (optional)Arguments

create_system my_new_system_nameExample

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

get_instance_interface_parameter_value <instance>
<interface> <parameter>

Usage

The value of the parameter.variousReturn

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

The name of the parameter on the
interface.

parameter

get_instance_interface_parameter_value uart_0 s0
setupTime

Example

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
auto_connect <element>6-54 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameters <instance> <childConnection>
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connection_parameters

get_composed_connection_parameters <instance>
<childConnection>

Usage

A list of parameter names.string[]Returns

The child instance containing a
subsystem.

instance

Arguments
The name of the connection in the
subsystem.

childConnection

get_composed_connection_parameters subsystem_0
cpu.data_master/memory.s0

Example

get_composed_connections <instance>
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_connections

get_composed_connections <instance>Usage

A list of connection names in the
subsystem. These connection
names are not qualified with the
instance name.

string[]Returns

The child instance containing a
subsystem.

instanceArguments

get_composed_connections subsystem_0Example

get_composed_instance_assignment <instance> <childInstance> <key>
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignment

get_composed_instance_assignment <instance>
<childInstance> <key>

Usage

The value of the assignment.string[]Returns

Altera CorporationCreating a System With Qsys

Send Feedback

6-55get_composed_connection_parameters <instance> <childConnection>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_assignment

The child instance containing a
subsystem.

instance

Arguments The name of a child instance
found in the subsystem.

childInstance

The assignment key.key

get_composed_instance_assignment subsystem_0
video_0 "embeddedsw.CMacro.colorSpace"

Example

get_composed_instance_assignments <instance> <childInstance>
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_assignments

get_composed_instance_assignments <instance>
<childInstance>

Usage

A list of assignment names.string[]Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childInstance

get_composed_instance_assignments subsystem_0 cpuExample

get_composed_instance_parameter_value <instance> <childInstance> <parameter>
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameter_value

get_composed_instance_parameter_value <instance>
<childInstance> <parameter>

Usage

The value of a parameter on an
instance of a subsystem.

string []Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childInstance

The name of the parameter to
query on an instance of a
subsystem.

parameter

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_composed_instance_assignments <instance> <childInstance>6-56 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_parameter_value

get_composed_instance_parameter_value subsystem_
0 cpu DATA_WIDTH

Example

get_composed_instance_parameters <instance> <childInstance>
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameters

get_composed_instance_parameters <instance>
<childInstance>

Usage

A list of parameter names.string []Returns

The child instance containing a
subsystem.

instance

Arguments
The name of a child instance
found in the subsystem.

childlInstance

get_composed_instance_parameters subsystem_0 cpuExample

get_composed_instances <instance>
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_composed_instances

get_composed_instances <instance>Usage

A list of instance names found in
the subsystem.

string []Returns

The child instance containing a
subsystem.

instanceArguments

get_composed_instances subsystem_0Example

get_connection_parameter_property <connection> <parameter> <property>
This command returns the value of a parameter property in a connection.

get_connection_parameter_property

get_connection_parameter_property <connection>
<parameter> <property>

Usage

The value of the parameter
property.

variousReturns

Altera CorporationCreating a System With Qsys

Send Feedback

6-57get_composed_instance_parameters <instance> <childInstance>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameter_property

The connection to query.connection

Arguments The name of the parameter.parameter

The property of the connection.property

get_connection_parameter_property cpu.data_master/
dma0.csr baseAddress UNITS

Example

get_connection_parameter_value <connection> <parameter>
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameter_value

get_connection_parameter_value <connection>
<parameter>

Usage

The value of the parameter.variousReturns

The connection to query.connection
Arguments

The name of the parameter.parameter

get_connection_parameter_value cpu.data_master/
dma0.csr baseAddress

Example

get_connection_parameters <connection>
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_parameters

get_connection_parameters <connection>Usage

A list of parameter names.string []Returns

The connection to query.connectionArguments

get_connection_parameters cpu.data_master/dma0.csrExample

get_connection_properties
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_properties

get_connection_propertiesUsage

A list of connection properties.string []Returns

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_connection_parameter_value <connection> <parameter>6-58 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_properties

NoneArguments

get_connection_propertiesExample

get_connection_property <connection> <property>
This command returns the value of a connection property.

get_connection_property

get_connection_property <connection> <property>Usage

The value of a connection
property.

string[]Returns

The connection to query.connection

Arguments The name of the connection
property.

property

get_connection_property cpu.data_master/dma0.csr
TYPE

Example

get_connections [<element>]
This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example cpu, all connections to any interface on the instance are returned. If an interface on
a child instance is specified, for examplecpu.instruction_master, only connections to that interface
are returned.

get_connections

get_connections [<element>]Usage

A list of connections.string[]Returns

The name of a child instance, or
the qualified name of an interface
on a child instance.

element (optional)Arguments

get_connections

get_connections cpu

get_connections cpu.instruction_master

Example

get_instance_assignment <instance> <key>
This command returns the value of an assignment on a child instance.

get_instance_assignment

get_instance_assignment <instance> <key>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-59get_connection_property <connection> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_assignment

The value of the specified
assignment.

string[]Returns

The name of the child instance.instance
Arguments

The assignment key to query.key

get_instance_assignment video_processor
embeddedsw.CMacro.colorSpace

Example

get_instance_assignments <instance>
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_assignments

get_instance_assignments <instance>Usage

A list of assignment keys.string[]Returns

The name of the child instance.instanceArguments

get_instance_assignments sdramExample

get_instance_interface_assignment <instance> <interface> <key>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignment

get_instance_interface_assignment <instance>
<interface> <key>

Usage

The value of the specified
assignment.

string []Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

The assignment key to query.key

get_instance_interface_assignment sdram s1
embeddedsw.configuration.isFlash

Example

get_instance_interface_assignments <instance> <interface>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments

get_instance_interface_assignments <instance>
<interface>

Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_assignments <instance>6-60 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_assignments

A list of assignment keys.string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_assignments sdram s1Example

get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_property

get_instance_interface_parameter_property
<instance> <interface> <parameter> <property>

Usage

The value of the parameter
property.

variousReturns

The name of the child instance.instance

Arguments

The name of an interface on the
child instance.

interface

The name of the parameter on the
interface.

parameter

The name of the property on the
parameter.

property

get_instance_interface_parameter_property uart_0
s0 setupTime ENABLED

Example

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

get_instance_interface_parameter_value <instance>
<interface> <parameter>

Usage

The value of the parameter.variousReturn

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

The name of the parameter on the
instance.

parameter

Altera CorporationCreating a System With Qsys

Send Feedback

6-61get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameter_value

get_instance_interface_parameter_value uart_0 s0
setupTime

Example

get_instance_interface_parameters <instance> <interface>
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_parameters

get_instance_interface_parameters <instance>
<interface>

Usage

A list of parameter names for
parameters in the interface.

string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_parameters uart_0 s0Example

get_instance_interface_port_property <instance> <interface> <port> <property>
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_port_property

get_instance_interface_port_property <instance>
<interface> <port> <property>

Usage

The value of the port property.variousReturns

The name of the child instance.instance

Arguments

The name of an interface on the
child instance.

interface

The name of the port in the
interface.

port

The name of the property of the
port.

property

get_instance_interface_port_property uart_0
exports tx WIDTH

Example

get_instance_interface_ports <instance> <interface>
This command returns a list of ports in an interface of a child instance.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_interface_parameters <instance> <interface>6-62 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_ports

get_instance_interface_ports <instance>
<interface>

Usage

A list of port names found in the
interface.

string[]Returns

The name of the child instance.instance

Arguments The name of an interface on the
child instance.

interface

get_instance_interface_ports uart_0 s0Example

get_instance_interface_properties
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_properties

get_instance_interface_propertiesUsage

A list of property names.string[]Returns

NoneArguments

get_instance_interface_propertiesExample

get_instance_interface_property <instance> <interface> <property>
This command returns the property value for an interface in a child instance.

get_instance_interface_property

get_instance_interface_property <instance>
<interface> <property>

Usage

The value of the property.string []Return

The name of the child instance.instance

Arguments
The name of an interface on the
child instance.

interface

he name of the property of the
interface.

property

get_instance_interface_property uart_0 s0
DESCRIPTION

Example

get_instance_interfaces <instance>
This command returns a list of interfaces in a child instance.

Altera CorporationCreating a System With Qsys

Send Feedback

6-63get_instance_interface_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interfaces

get_instance_interfaces <instance>Usage

A list of interface names.string[]Returns

The name of the child instance.instanceArguments

get_instance_interfaces uart_0Example

get_instance_parameter_property <instance> <parameter> <property>
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_property

get_instance_parameter_property <instance>
<parameter> <property>

Usage

The name of the child instance.variousReturn

The child instance containing a
subsystem.

instance

Arguments The name of the parameter in the
instance.

parameter

The name of the property of the
parameter.

property

get_instance_parameter_property uart_0 baudRate
ENABLED

Example

get_instance_parameter_value <instance> <parameter>
This command returns the value of a property in a child instance.

get_instance_parameter_value

get_instance_parameter_value <instance>
<parameter>

Usage

The value of the parameter.variousReturns

The name of the child instance.instance

Arguments The name of the parameter in the
instance.

parameter

get_instance_parameter_value uart_0 baudRateExample

get_instance_parameters <instance>
This command returns a list of parameters in a child instance.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instance_parameter_property <instance> <parameter> <property>6-64 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameters

get_instance_parameters <instance>Usage

A list of parameters in the
instance.

string[]Returns

The name of the child instance.instanceArguments

get_instance_parameters uart_0Example

get_instance_port_property <instance> <port> <property>
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_port_property

get_instance_port_property <instance> <port>
<property>

Usage

The value of the property for the
port.

variousReturn

The name of the child instance.instance

Arguments

The name of a port in one of the
interfaces on the child instance.

port

The name of a property found on
the port; DIRECTION, ROLE,
WIDTH.

property

get_instance_port_property uart_0 tx WIDTHExample

get_instance_properties
This command returns a list of properties for a child instance.

get_instance_properties

get_instance_propertiesUsage

A list of property names for the
child instance.

string[]Returns

NoneArguments

get_instance_propertiesExample

get_instance_property <instance> <property>
This command returns the value of a property for a child instance.

get_instance_property

get_instance_property <instance> <property>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-65get_instance_port_property <instance> <port> <property>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property

The value of the property.string[]Returns

The name of the child instance.instance

Arguments The name of a property found on
the instance.

property

get_instance_property cpu ENABLEDExample

get_instances
This command returns a list of the instance names for all child instances in the system.

get_instances

get_instancesUsage

A list of child instance names.string[]Returns

NoneArguments

get_instancesExample

get_interface_port_property <interface ><port ><property>
This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_port_property

get_interface_port_property <interface><port>
<property>

Usage

The value of the property.variousReturn

The name of a top-level interface
on the system.

instance

Arguments The name of a port found in the
interface.

port

The name of a property found on
the port.

property

get_interface_port_property uart_exports tx
DIRECTION

Example

get_interface_ports <interface>
This command returns the names of all of the ports that have been added to an interface.

get_interface_ports

get_interface_ports <interface>Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_instances6-66 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_ports

A list of port names.string[]Returns

The name of a top-level interface
on the system.

interfaceArguments

get_interface_ports export_clk_outExample

get_interface_properties
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_properties

get_interface_propertiesUsage

A list of interface properties.string[]Returns

NoneArguments

get_interface_propertiesExample

get_interface_property <interface> <property>
This command returns the value of a property from the specified interface.

get_interface_property

get_interface_property <interface> <property>Usage

The property value.variousReturn

The name of a top-level interface
on the system.

interface

Arguments
The name of the property,
EXPORT_OF.

property

get_interface_property export_clk_out EXPORT_OFExample

get_interfaces
This command returns a list of top-level interfaces in the system.

get_interfaces

get_interfacesUsage

A list of the top-level interfaces
exported from the system.

string[]Returns

NoneArguments

get_interfacesExample

Altera CorporationCreating a System With Qsys

Send Feedback

6-67get_interface_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_properties
This command returns the properties that you can manage for the top-level module.

get_module_properties

get_module_propertiesUsage

A list of property names.string[]Returns

NoneArguments

get_module_propertiesExample

get_module_property <property>
This command returns the value of a top-level system property.

get_module_property

get_module_property <property>Usage

The value of the property.string[]Returns

The name of the property to
query; NAME.

propertyArguments

get_module_property NAMEExample

get_parameter_properties
This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_parameter_properties

get_parameter_propertiesUsage

A list of parameter properties.string[]Returns

NoneArguments

get_parameter_propertiesExample

get_port_properties
This command returns a list of properties that you can query on ports.

get_port_properties

get_port_propertiesUsage

A list of port properties.string[]Returns

NoneArguments

get_port_propertiesExample

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
get_module_properties6-68 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_project_properties
This command returns a list of properties that you can query for the Quartus II project.

get_project_properties

get_project_propertiesUsage

A list of project properties.string[]Returns

NoneArguments

get_project_propertiesExample

get_project_property <property>
This command returns the value of a Quartus II project property.

get_project_property

get_project_property <property>Usage

The value of the property.string[]Returns

The name of the project property;
DEVICE_FAMILY.

propertyArguments

get_project_property DEVICE_FAMILYExample

load_system <file>
This command loads a Qsys system from a file, and uses the system as the current system for scripting
commands.

load_system

load_system <file>Usage

NoneReturns

The path to a .qsys file.fileArguments

load_system example.qsysExample

lock_avalon_base_address <instance.interface>
This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

lock_avalon_base_address

lock_avalon_base_address <instance.interface>Usage

NoneReturns

Altera CorporationCreating a System With Qsys

Send Feedback

6-69get_project_properties
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lock_avalon_base_address

The qualified name of the
interface of an instance, in
<instance>.<interface> format.

instance.interfaceArguments

lock_avalon_base_address sdram.s1Example

preview_insert_avalon_streaming_adapters
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

preview_insert_avalon_streaming_adapters

preview_insert_avalon_streaming_adaptersUsage

NoneReturns

NoneArguments

preview_insert_avalon_streaming_adaptersExample

remove_connection <connection>
This command removes a connection from the system.

remove_connection

remove_connection <connection>Usage

NoneReturns

The name of the connection to
remove.

connectionArguments

remove_connection cpu.data_master/sdram.s0Example

remove_instance <instance>
This command removes a child instance from the system.

remove_instance

remove_instance <instance>Usage

NoneReturns

The name of the child instance to
remove.

instanceArguments

remove_instance cpuExample

remove_interface <interface>
This command removes an exported top-level interface from the system.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
preview_insert_avalon_streaming_adapters6-70 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_interface

remove_interface <interface>Usage

NoneReturns

The name of the exported top-
level interface.

interfaceArguments

remove_interface clk_outExample

save_system [<file>]
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the load_system command.

save_system

save_system [<file>]Usage

NoneReturns

If present, the path of the .qsys file
to save.

file optionalArguments

save_system

save_system example.qsys

Example

send_message <level> <message>
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.

send_message

send_message <level> <message>Usage

NoneReturn

Altera CorporationCreating a System With Qsys

Send Feedback

6-71save_system [<file>]
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

send_message

The following message levels are
supported:

• ERROR—Provides an error
message.

• WARNING—Provides a
warning message.

• INFO—Provides an informa-
tional message.

• PROGRESS—Provides a
progress message.

• DEBUG—Provides a debug
message when debug mode is
enabled.

level

Arguments

The text of the message.message

send_message ERROR "The system is down!"Example

set_connection_parameter_value <connection> <parameter> <value>
This command sets the parameter value for a connection.

set_connection_parameter_value

set_connection_parameter_value <connection>
<parameter> <value>

Usage

NoneReturn

The connection.connection

Arguments The name of the parameter.parameter

The new parameter value.value

set_connection_parameter_value cpu.data_master/
dma0.csr baseAddress "0x000a0000"

Example

set_instance_parameter_value <instance> <parameter> <value>
This command set the parameter value for a child instance. Derived parameters and SYSTEM_INFO
parameters for the child instance can not be set with this command.

set_instance_parameter_value

set_instance_parameter_value <instance>
<parameter> <value>

Usage

NoneReturn

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
set_connection_parameter_value <connection> <parameter> <value>6-72 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value

The name of the child instance.instance

Arguments The name of the parameter.parameter

The new parameter value.value

set_instance_parameter_value uart_0 baudRate 9600Example

set_instance_property <instance> <property> <value>
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.

set_instance_property

set_instance_property <instance> <property>
<value>

Usage

NoneReturn

The name of the child instance.instance

Arguments The name of the property.property

The new parameter value.value

set_instance_property cpu ENABLED falseExample

set_interface_property <interface> <property> <value>
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.

set_interface_property

set_interface_property <interface> <property>
<value>

Usage

NoneReturn

The name of an exported top-level
interface.

interface

Arguments The name of the property.property

The new parameter value.value

set_interface_property clk_out EXPORT_OF clk.clk_
out

Example

set_module_property <property> <value>
This command sets the system property value, such as the name of the system using the NAME property.

Altera CorporationCreating a System With Qsys

Send Feedback

6-73set_instance_property <instance> <property> <value>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property

set_module_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_module_property NAME "new_system_name"Example

set_project_property <property> <value>
This command sets the project property value, such as the device family.

set_project_property

set_project_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_project_property DEVICE_FAMILY "Cyclone IV
GX"

Example

set_validation_property <property> <value>
This command sets a property that affects how andwhen validation is run during system scripting. To disable
system validation after each scripting command, set AUTOMATIC_VALIDATION to false.

set_validation_property

set_validation_property <property> <value>Usage

NoneReturn

The name of the property.property
Arguments

The new property value.value

set_validation_property AUTOMATIC_VALIDATION falseExample

unlock_avalon_base_address <instance.interface>
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the auto_assign_base_addresses or
auto_assign_system_base_addresses commands are run.

unlock_avalon_base_address

unlock_avalon_base_address <instance.interface>Usage

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
set_project_property <property> <value>6-74 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unlock_avalon_base_address

NoneReturn

The qualified name of the
interface of an instance, in
<instance>.<interface> format

instance.interfaceArguments

unlock_avalon_base_address sdram.s1Example

upgrade_sopc_system <filename>
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_system command.

upgrade_sopc_system

upgrade_sopc_system <filename>Usage

NoneReturn

The path to the .sopc file being
upgraded. The upgrademoves the
.sopc file and related generation
files to a backup directory.

filenameArguments

upgrade_sopc_system old_system.sopcExample

validate_connection <connection>
This command validates the specified connection, and returns the during validation messages.

validate_connection

validate_connection <connection>Usage

A list of messages produced
validation.

string []Return

The path to the .sopc file being
upgraded. The upgrademoves the
.sopc file and related generation
files to a backup directory.

connectionArguments

validate_connection cpu.data_master/sdram.s1Example

validate_instance <instance>
This command validates the specified child instance, and returns the validation messages.

validate_instance

validate_instance <instance>Usage

Altera CorporationCreating a System With Qsys

Send Feedback

6-75upgrade_sopc_system <filename>
QII51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance

A list of messages produced
validation.

string []Return

The name of the child instance to
validate.

instanceArguments

validate_instance cpuExample

validate_instance_interface <instance> <interface>
This command validates an interface on a child instance, and returns the validation messages.

validate_instance_interface

validate_instance_interface <instance> <interface>Usage

A list of messages produced
validation.

string []Return

The name of the child instance.instance

Arguments The name of the instance on the
child instance to validate.

interface

validate_instance_interface cpu data_masterExample

validate_system
This command validates the system, and returns the validation messages.

validate_system

validate_systemUsage

A list of messages produced
validation.

string []Return

NoneArguments

validate_systemExample

Document Revision History
Table 6-7 indicates edits made to the Creating a System With Qsys content since its creation.

Creating a System With QsysAltera Corporation

Send Feedback

QII51020
validate_instance_interface <instance> <interface>6-76 2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 6-7: Document Revision History

ChangesVersionDate

• Added: Integrating with the .qsys File.
• Added: Using the Hierarchy Tab.
• Added: Managing Interconnect Requirements.
• Added: Viewing Qsys Interconnect.

13.1.0November 2013

• Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BF

May 2013

M ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS

Component.
• Added VHDL language support options.

13.0.0May 2013

• Added AMBA AXI4 support.12.1.0November 2012

• Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

12.0.0June 2012

• Added Synopsys VCS and VCS MX Simulation Shell Script.
• AddedCadence Incisive Enterprise (NCSIM) Simulation Shell

Script.
• Added Using Instance Parameters and Example Hierarchical

System Using Parameters.

11.1.0November 2011

• Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

11.0.0May 2011

Initial release.10.1.0December 2010

Related Information
Quartus II Handbook Archive

Altera CorporationCreating a System With Qsys

Send Feedback

6-77Document Revision History
QII51020
2013.11.4

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	6. Creating a System With Qsys
	Component Interface Support
	Understanding the Qsys Design Flow
	Creating a Qsys System
	Adding and Connecting System Contents
	Adding Components
	Connecting Components
	Filtering Components

	Managing Views
	Using the Hierarchy Tab
	Using the Parameters Tab
	Using the Presets Tab
	Working With Presets for Supported IP Components

	Using the Block Symbol Tab
	Using the Address Map Tab
	Using the Clock Tab
	Using the Project Settings Tab
	Using the Instance Parameters Tab
	Creating an Instance Script

	Using the Interconnect Requirements Tab
	Configuring Interconnect Requirements for the System
	Configuring Interconnect Requirements for an Interface

	Creating Hierarchical Systems
	Adding Systems to the Library
	Creating a Component Based on a System

	Qsys 64-Bit Addressing Support
	Creating Secure Systems (TrustZones)
	Managing Secure Settings in Qsys
	Understanding Compilation-Time Security Configuration Options
	Accessing Undefined Memory Regions

	Viewing the Qsys Interconnect
	Using the Memory-Mapped Interconnect Tab
	Manually Controlling Pipelining in the Qsys Interconnect

	Integrating Your Qsys Design with the Quartus II Software
	Integrating with the .qsys File
	Integrating with the .qip File
	Setting Clock Constraints

	Generating a Qsys System
	Generating Output Files
	CMSIS Support for Qsys Systems With An HPS Component

	Viewing the HDL Example

	Simulating a Qsys System
	Generate and Modify the Testbench System
	Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only)
	Adding Assertion Monitors
	Simulation Scripts
	Simulating Software Running on a Nios II Processor

	System Examples
	PCI Express Subsystem Example
	Ethernet Subsystem Example
	PCI Express to Ethernet Bridge Example
	Pipeline Bridges

	Hierarchical System Using Instance Parameters Example

	Searching for Component Files to Add to the Library
	Adding Components to the Library
	Copy Components to a Directory Searched by Default
	Reference Components in an IP Index File (.ipx)
	Understanding the IP Index File (.ipx) Syntax
	ip-catalog
	ip-make-ipx

	Extending the Default Search Path

	Integrating Third-Party Components

	Using Qsys Command-Line with Utilities and Scripts
	Running the Qsys Editor from the Command-Line
	Launching Qsys with Additional Computer Memory

	Generating Qsys Systems with the qsys-generate Utility
	Creating and Managing a System with qsys-script
	Qsys Scripting Command Reference
	add_connection <start> [<end>]
	add_instance <name> <type> [<version>]
	add_interface <name> <type> <direction>
	auto_assign_base_addresses <instance>
	auto_assign_irqs <instance>
	auto_connect <element>
	create_system [<name>]
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_composed_connection_parameters <instance> <childConnection>
	get_composed_connections <instance>
	get_composed_instance_assignment <instance> <childInstance> <key>
	get_composed_instance_assignments <instance> <childInstance>
	get_composed_instance_parameter_value <instance> <childInstance> <parameter>
	get_composed_instance_parameters <instance> <childInstance>
	get_composed_instances <instance>
	get_connection_parameter_property <connection> <parameter> <property>
	get_connection_parameter_value <connection> <parameter>
	get_connection_parameters <connection>
	get_connection_properties
	get_connection_property <connection> <property>
	get_connections [<element>]
	get_instance_assignment <instance> <key>
	get_instance_assignments <instance>
	get_instance_interface_assignment <instance> <interface> <key>
	get_instance_interface_assignments <instance> <interface>
	get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_instance_interface_parameters <instance> <interface>
	get_instance_interface_port_property <instance> <interface> <port> <property>
	get_instance_interface_ports <instance> <interface>
	get_instance_interface_properties
	get_instance_interface_property <instance> <interface> <property>
	get_instance_interfaces <instance>
	get_instance_parameter_property <instance> <parameter> <property>
	get_instance_parameter_value <instance> <parameter>
	get_instance_parameters <instance>
	get_instance_port_property <instance> <port> <property>
	get_instance_properties
	get_instance_property <instance> <property>
	get_instances
	get_interface_port_property <interface ><port ><property>
	get_interface_ports <interface>
	get_interface_properties
	get_interface_property <interface> <property>
	get_interfaces
	get_module_properties
	get_module_property <property>
	get_parameter_properties
	get_port_properties
	get_project_properties
	get_project_property <property>
	load_system <file>
	lock_avalon_base_address <instance.interface>
	preview_insert_avalon_streaming_adapters
	remove_connection <connection>
	remove_instance <instance>
	remove_interface <interface>
	save_system [<file>]
	send_message <level> <message>
	set_connection_parameter_value <connection> <parameter> <value>
	set_instance_parameter_value <instance> <parameter> <value>
	set_instance_property <instance> <property> <value>
	set_interface_property <interface> <property> <value>
	set_module_property <property> <value>
	set_project_property <property> <value>
	set_validation_property <property> <value>
	unlock_avalon_base_address <instance.interface>
	upgrade_sopc_system <filename>
	validate_connection <connection>
	validate_instance <instance>
	validate_instance_interface <instance> <interface>
	validate_system

	Document Revision History

